-
Courses
Courses
Choosing a course is one of the most important decisions you'll ever make! View our courses and see what our students and lecturers have to say about the courses you are interested in at the links below.
-
University Life
University Life
Each year more than 4,000 choose NUI Galway as their University of choice. Find out what life at NUI Galway is all about here.
-
About NUI Galway
About NUI Galway
Since 1845, NUI Galway has been sharing the highest quality teaching and research with Ireland and the world. Find out what makes our University so special – from our distinguished history to the latest news and campus developments.
-
Colleges & Schools
Colleges & Schools
NUI Galway has earned international recognition as a research-led university with a commitment to top quality teaching across a range of key areas of expertise.
-
Research & Innovation
Research & Innovation
NUI Galway’s vibrant research community take on some of the most pressing challenges of our times.
-
Business & Industry
Guiding Breakthrough Research at NUI Galway
We explore and facilitate commercial opportunities for the research community at NUI Galway, as well as facilitating industry partnership.
-
Alumni, Friends & Supporters
Alumni, Friends & Supporters
There are over 90,000 NUI Galway graduates Worldwide, connect with us and tap into the online community.
-
Community Engagement
Community Engagement
At NUI Galway, we believe that the best learning takes place when you apply what you learn in a real world context. That's why many of our courses include work placements or community projects.
Cheminformatics and Toxicology (MSc)
Course Overview
Cheminformatics is the use of computational techniques to solve chemistry, pharmacology and toxicology problems. Students will understand and apply a range of computational tools to address toxicological questions in preparation for a career in in silico toxicity prediction in the pharma, industry, consultancy, academia and government. The course is delivered over one year by the disciplines of Pharmacology and Therapeutics, Mathematics and Chemistry.
What makes this course unique ...
- Integrated training in toxicology and computational approaches (analytics) to develop a highly marketable skill-set for a career in the Pharma industry or organizations that regulate chemical safety
- Guest lecturers from regulators and industry that teach from "real-life" cases and that can provide career development advice
- An independent research project focussed on solving real world toxicity/toxicity assessment problems
Scholarships available
Find out about our Postgraduate Scholarships here.
Applications and Selections
Applications are made online via the NUI Galway Postgraduate Applications System.
A shortlisting procedure will be applied that evaluates:
- Undergraduate academic performance throughout their time at university
- The content and quality of their personal statement
- Prior research or work experience
- Reference letters
The ideal student will have a BSc or MSc in chemistry with an interest in toxicology, and computational approaches to toxicity prediction. Students with a background in Pharmacology or Bio-informatics (or related disciplines) will also be encouraged to apply.
Who Teaches this Course
- Dr Howard Fearnhead
- Dr Declan McKernan
- Professor John Kelly
- Professor Cathal Seoighe
- Dr Pilib Ó Broin
- Dr Aaron Golden
- Dr David Cheung
Requirements and Assessment
Key Facts
Entry Requirements
Primary degree: A 2.2 degree or higher (or equivalent) in Chemistry, Pharmacology, Biochemistry or a related discipline.
Language skills: An IELTS score of 6.5 or greater in all categories is required.
Additional Requirements
Duration
1 year, full-time
Next start date
September 2021
A Level Grades ()
Average intake
6
Closing Date
Please view the offer rounds website.
NFQ level
Mode of study
ECTS weighting
90
Award
CAO
Course code
1CIT1
Course Outline
The course is delivered over three semesters. In semester 1 students learn the fundamentals of pharmacology, toxicology and are introduced to computational drug-design, programming for biology and statistical computing in R. This forms a foundation for more advanced material explored in Semester 2.
In Semester 2 students consider more advanced concepts in toxicology and investigate controversial areas of toxicology. They also develop a theoretical and a practical understanding of high through put and high content screening technologies that are used to generate large data sets for analysis. The students also learn to apply bioinformatic and cheminformatic tools to such large data sets. This semester equips the students to develop and test a novel hypothesis through independent research that is completed in the third semester.
In the third semester students work independently but with the guidance of an academic or industry-based thesis supervisor on a cheminformatics research project.
The course involves lectures, laboratory-based training, self-directed learning and a three month independent research project. Competence is assessed through a mixture of written examinations, computer-based examinations, course work (including verbal presentations and poster presentations) and a research thesis.
Curriculum Information
Curriculum information relates to the current academic year (in most cases).Course and module offerings and details may be subject to change.
Glossary of Terms
- Credits
- You must earn a defined number of credits (aka ECTS) to complete each year of your course. You do this by taking all of its required modules as well as the correct number of optional modules to obtain that year's total number of credits.
- Module
- An examinable portion of a subject or course, for which you attend lectures and/or tutorials and carry out assignments. E.g. Algebra and Calculus could be modules within the subject Mathematics. Each module has a unique module code eg. MA140.
- Subject
- Some courses allow you to choose subjects, where related modules are grouped together. Subjects have their own required number of credits, so you must take all that subject's required modules and may also need to obtain the remainder of the subject's total credits by choosing from its available optional modules.
- Optional
- A module you may choose to study.
- Required
- A module that you must study if you choose this course (or subject).
- Required Core Subject
- A subject you must study because it's integral to that course.
- Semester
- Most courses have 2 semesters (aka terms) per year, so a three-year course will have six semesters in total. For clarity, this page will refer to the first semester of year 2 as 'Semester 3'.
Year 1 (90 Credits)
Required PM208: Fundamental Concepts in Pharmacology - 5 Credits - Semester 1Required PM311: Introduction to Toxicology - 5 Credits - Semester 1
Required MA5108: Statistical Computing with R - 5 Credits - Semester 1
Required PM5108: Applied Toxicology - 5 Credits - Semester 1
Required MA5114: Programming for Biology - 5 Credits - Semester 1
Required CH5106: Computational Approaches to Drug Design and Biomolecular Structure - 5 Credits - Semester 1
Required PM5114: Screening Molecular Libraries - 5 Credits - Semester 2
Required MA5118: Advanced Chemoinformatics - 5 Credits - Semester 2
Required PM5112: Research Project in Toxicology - 30 Credits - Semester 2
Required MA324: Introduction to Bioinformatics (Honours) - 5 Credits - Semester 2
Required PM5111: Advanced Toxicology - 5 Credits - Semester 2
Required PM5110: Current Topics in Toxicology - 10 Credits - Semester 2
Why Choose This Course?
Career Opportunities
It costs approximately $1bn and 10–20 years to get a drug from conception to market. While many candidate molecules enter the drug development pipeline, most will fail to become drugs, mainly due to unexpected toxicity. The failure to identify toxicity early in the development process costs the pharmaceutical industry billions of dollars in either failed clinical trials or in withdrawing drugs from the market. At the same time national and trans-national regulatory bodies work to identify the toxicity of chemicals used in food-stuffs, consumer products, industry and agriculture with the aim of building a chemically safe society. Consequently the global ADME toxicology testing market, which aims to identify potential toxicity is projected to surpass $16.2 billion by 2024. In an era when Pharma investment in research and development is falling, scientists to develop and use computational tools that better predict toxicity are at a premium. The value of these skills is further enhanced by the scarcity of training programmes to produce toxicologists with the appropriate computational skills.
Graduates from the course will be employed in the Pharmaceutical industry, the Cosmetics Industry, National and EU Regulatory bodies, Toxicology Consultancies and academia.
Who’s Suited to This Course
Learning Outcomes
Work Placement
Study Abroad
Related Student Organisations
Course Fees
Fees: EU
Fees: Tuition
Fees: Student levy
Fees: Non EU
Find out More
Howard Fearnhead, PhD
T: +353 91 495 240
E: howard.fearnhead@nuigalway.ie
www.nuigalway.ie/our-research/people/howardfearnhead/