Wednesday, 4 October 2017

On Monday 2 October, Minister for Health Simon Harris TD  unveiled a new name and brand identity for a leading national academic research body that aims to increase Ireland’s position as a centre of excellence and attract clinical and translational research projects that can ultimately improve and enhance public health. Clinical Research Development Ireland (CRDI) is the new name for Molecular Medicine Ireland (MMI), a not for profit partnership established by NUI Galway, Royal College of Surgeons in Ireland, Trinity College Dublin, University College Cork and University College Dublin, their associated academic hospitals and clinical research facilities. CRDI’s ambitious Strategic Plan 2017 – 2021 was also presented at the event, which was held in the stately surroundings of Farmleigh House, and attended by key representatives from the Irish and international academic, public and private sectors. CRDI acts as a central contact point for the development of collaborative research with academic and industry partners from Ireland and abroad. It does this by helping to develop, co-ordinate and facilitate research programmes and networks in a wide range of therapeutic areas in both medicines and medical devices. Since it was first established in 2002, it has provided training, including structured PhD programmes and Good Clinical Practice (GCP) courses, to over 4,600 Irish researchers, it has jointly facilitated almost 200 clinical research  studies and has helped to position Ireland as a prime location for the conduct of clinical and translational research. CRDI works with funding agencies that include the Health Research Board, Enterprise Ireland, Science Foundation Ireland, Wellcome Trust and the Irish Cancer Society. According to Dr Pat O’Mahony, Chief Executive of CRDI, Ireland has significant potential to increase its clinical research activities. “Currently we estimate that less than 2 percent of Irish adult patients are offered the opportunity to participate in clinical research as part of their medical treatment; the international target is circa 10 percent – so there is a significant opportunity to increase clinical research in Ireland that would also enable Irish patients to potentially access new and emerging therapies. Clinical Research Development Ireland strives to build on Ireland’s reputation as the tenth strongest contributor to global scientific research.  We seek to create an enabling environment where the process of conducting a clinical research project across one or a number of different centres in Ireland is enabled quickly and easily.  We are a partnership and we endeavour to mobilise the combined strength of all our partner academic institutions, their medical schools and associated hospitals.” In health systems where clinical research infrastructure and delivery (both academic led and commercially sponsored) are better developed, there are significant and demonstrable benefits for patients in terms of better outcomes.  Dr O’Mahony emphasised this message, stating; “It is undisputed that a strong clinical research infrastructure offers a host of benefits to the wider healthcare system including improved outcomes for patients, better use of scarce resources, and improved clinical staff recruitment and retention. Coordinating and enabling clinical researchers at a national and international level is the focus of the CRDI business unit, HRB Clinical Research Coordination Ireland. In addition, through our coordination of academic training programmes we are facilitating the next generation of researchers to deliver research which will revolutionise patient treatment options and the wider health system. Through the CRDI coordinated Irish Clinical Academic Training programme alone, over the next five years we will enable 40 top class clinicians to significantly contribute to clinical research in Ireland.” CRDI Chairman, Tom Lynch said, “The new name Clinical Research Development Ireland (CRDI) will enable this unique academic research partnership to align more closely with our vision to be an effective and innovative force for the development of translational and clinical research in Ireland. We are living in exciting times for research development and CRDI, through developing and supporting translational and clinical research infrastructure and delivery across our partner academic institutions, their medical schools and associated hospitals, will be perfectly placed to lead the way in Ireland.” Prof Dermot Kelleher, founder and former Board member of MMI, Dean of the Faculty of Medicine, University of British Columbia, Canada, and a guest speaker at the event said: “The molecular basis of disease is now firmly embedded in both the diagnosis and treatment of conditions as diverse as cancer, rheumatoid arthritis and neurological conditions such as epilepsy. The evolution of Molecular Medicine Ireland to Clinical Research Development Ireland reflects the necessity to address the current challenge of effective implementation of molecular medicine into clinical practice.”  See CRDI Strategic Plan 2017-2021 here    

Sunday, 1 October 2017

The European Orthopaedic Research Society (EORS) promotes education, research, innovation, clinical translation and social responsibility in orthopaedics. EORS meetings provide a forum to discuss orthopaedic-related challenges and achievements, in research, clinical and commercial space. EORS 2018 invites symposia proposals in all areas of orthopaedic, musculoskeletal and trauma research, development and clinical translation. Symposia proposals with educational and societal impact are also welcomed. If you are interested in submitting a symposium proposal, please complete the proposal form and submit it to eors@nuigalway.ie by the 31st of October 2017. Chair(s) of successful symposium proposals will be notified by email by November 2017. For full details, please visit website  If you have any questions regarding EORS2018, please contact  eors@nuigalway.ie

Tuesday, 26 September 2017

The NUIG Flow Cytometry Core Facility is proud to announce the delivery and successful installation of its newest acquisition, the ImageStream®X Mark II Imaging Flow Cytometer, funded by an SFI Infrastructure award. The revolutionary Amnis ImageStream®X Mark II Imaging Flow Cytometer (Merck Millipore) combines the speed, sensitivity, and phenotyping abilities of flow cytometry with the detailed imagery and functional insights of microscopy. This unique combination provides the tools for numerous applications that cannot be pursued using either technique alone. Flow cytometry is a technology that allows quantitative and qualitative analysis of cell populations at a single cell level, providing multi-parametric data based on measurements of scattered light and fluorescent signals produced by cells as they pass through a laser light source. The addition of the image acquisition feature of Imaging Flow Cytometry greatly increases the amount and value of the information obtained from each experiment when compared to either of the techniques alone (Flow Cytometry and Microscopy). This instrument produces multiple high-resolution images of every cell as it flows (at a rate of up to 5000 cells per second), including brightfield and darkfield (SSC), and up to 10 fluorescent markers with sensitivity exceeding conventional flow cytometers. When compared to conventional Flow Cytometry, researchers can obtain numerous additional parameters on their samples and quantify the intensity, specific location, and distribution of signals within tens of thousands of cells per sample. These include cell morphology, nuclear shape and subcellular localization and distribution of target molecules which enable for multiple features to be analysed in great detail. The majority of the dyes used in conventional Flow Cytometry can also be detected by the instrument with compensation being also applied to the images, rendering the users with the ability to use many more dyes than they could ever use when performing microscopic analysis. Furthermore, it allows for the visual confirmation that rare events are real cells and not just artefacts. Our system has 4 lasers (405nm, 488nm, 561nm, 642nm and 785nm (SSC)), three different objectives (20x, 40x and 60x) and the extended depth of field option (EDF). EDF keeps the depth of cell in focus without loss of fluorescence sensitivity and can be of great value when imaging FISH spots or other sub-cellular features. The data analysis software, IDEAS®, offers powerful tools for graphical representation and quantification of more than 85 parameters per cell. Coupled with the short acquisition time, this technology allows the analysis of statistically relevant numbers of images, which is not feasible using classical microscopy. Taken together, the capabilities of the ImageStream®X Mark II system make it equivalent or superior to traditional flow applications for multi-parameter cell/particle analysis while also integrating the scope of flow cytometry and microscopy. Typical applications include the study of: Autophagy Apoptosis Phagocytosis Protein internalization, nuclear translocation and subcellular localization DNA damage response Nuclear architecture Cell signalling Cell-cell interactions and immune synapse formation Cell cycle Nanoparticle uptake We are keen to talk with researchers in NUI Galway and their collaborators at other institutions about potential applications of imaging flow cytometry to their ongoing and planned projects. For more information on the capabilities of this equipment and consultation on how it can be of value to your research programme, please contact Dr. Joana Cabral at joana.cabral@nuigalway.ie  

Monday, 14 August 2017

Twelve CÚRAM PIs were acknowledged for their roles as champions of EU research in Ireland. As leaders of major projects in the European Research and Innovation Programme – Horizon 2020 – these investigators are deemed to have reached the pinnacle of the European research system. According to Enterprise Ireland, all projects tackle societal challenges while enabling enterprise development and are a testament to the world class research that is being carried out in Ireland and to the robust research infrastructure that has been built in Ireland over recent years. The 12 PI’s who received awards at Ireland’s Champions of EU Research Forum in Dublin on July 18th were; Prof. Martin O’Donnell, Dr Martin O’Halloran, Prof. Abhay Pandit, Prof. Tim O’Brien, Dr Dimitrios Zeugolis, Prof. Afshin Samali, Prof. Garry Duffy, Prof. Frank Barry and Dr Mary Murphy from NUI Galway, and Prof. Fergal O’Brien from the Royal College of Surgeons in Ireland, Dr Daniel Kelly from Trinity College Dublin and Prof. Madeleine Lowry from University College Dublin. The award ceremony was attended by John Halligan TD, Minister of State for Training, Skills, Innovation, Research and Development, and by Julie Sinnamon, CEO of Enterprise Ireland. Thee event was hosted by Enterprise Ireland on behalf of Ireland’s National Support Network for Horizon 2020. Full list of champions is available here.  

Thursday, 13 July 2017

Science Foundation Ireland has partnered with the National Science Foundation (NSF) on a collaborative framework called I-Corps@SFI to allow participation of SFI-funded researchers in the NSF Innovation Corps (I-Corps) Programme. The SFI/NSF I-Corps@SFI Entrepreneurial Training Programme is intended to support SFI funded researchers to develop entrepreneurial skills that will enable them to realise new opportunities for their research that will, in turn, lead to economic and societal impact. The SFI/NSF I-Corps@SFI Entrepreneurial Training Programme comprises an intensive 3-day bootcamp undertaken at an NSF I-Corps affiliated location in the United States, followed by an immersive 6-week period of opportunity discovery/validation, during which teams are mentored by NSF I-Corps trainers On July 10th 2017 a team from CÚRAM at NUI Galway travelled to Chicago to commence their training programme. The team consisted of Dr. Neil Ferguson, Industry Programme Manager, CÚRAM,  Dr. Martin O'Halloran, Investigator in CÚRAM and  Director of the Translational Medical Device Lab and  Atif Shadzad , Post Doctoral Researcher with Dr. O'Halloran.  Further information on the programme is available on the SFI website here or the NSF website here 

Wednesday, 5 July 2017

MMI is supporting CÚRAM, the Centre for Research in Medical Devices, in its mission to translate research to the clinic and in development and delivery of the centre’s education and training programme. This partnership is formalised through the SFI funded project entitled: ” Developing Key Structures and Resources to Support Medical Device Clinical Research in Ireland “. As part of this project MMI is assessing the impact of the Medical Device Directive revisions for key stakeholders in the Irish MedTech community.  Medical Writing; Volume 26, Issue 2 (Medical Devices)New EU medical device regulations: Impact on the MedTech sectorAuthors: Robert Behan, Abhay Pandit, Mark Watson Regulation plays a fundamental role in the translation of innovative medical devices from concept to clinical application and ensures that only devices that exhibit the highest standards of safety and quality are released onto the EU Single Market for sale and clinical use. The impending introduction of a revised Medical Device Regulatory Framework in the EU will require an assessment of how stakeholders in the MedTech sector will be affected. Understanding the impact will be essential for maintaining compliance in the changing regulatory environment as well as for promoting commercial competitiveness and facilitating early access to innovative medical device technologies. In Ireland, a national initiative has been launched to centralise expertise on the regulatory requirements for medical devices in the EU and to analyse how the new medical device regulations will affect requirements for medical device clinical investigations and commercialisation of medical device technologies. http://journal.emwa.org/medical-devices/new-eu-medical-device-regulations-impact-on-the-medtech-sector/ Further information on MMI / CÚRAM Partnership at http://www.molecularmedicineireland.ie/research/curam/

Thursday, 22 June 2017

As published in Silicon Republic, https://www.siliconrepublic.com/machines/curam-galway-medtech-centre June 22nd 2017 The Cúram medical devices research centre at NUI Galway has big plans for the future, after securing €22m in EU funding within 10 months of opening. The life sciences sector in Ireland is the place to be, it seems, with biopharmaceutical giants firmly ensconced within the Irish economy, both as a producer and exporter of a variety of drugs. In fact, one of those companies, APC Technologies, has gone so far as to describe Ireland as a ‘phenomenal place’ to be right now. But behind the world of biopharma is another exciting field where medicine and machines combine to create devices capable of these medications in a variety of ways. It is just a matter of trying to find new, interesting and more efficient means to create devices that can, say, help diabetes patients monitor their blood sugar levels with unprecedented accuracy. One such research centre is Cúram at NUI Galway (NUIG), located in a region that has established itself as a life sciences hub over the past few decades. Opened as recently as September, the €68m centre for medical devices research has 24 industry partners and works with six of Ireland’s largest universities. Internationally, this expands to 403 collaborators and, in just a matter of 10 months, the centre has accumulated €22m in EU funding under various research projects, nine of which it is leading. “The money invested in Cúram is pretty close to be repaid from exchequer and non-exchequer funding,” Cúram director Prof Abhay Pandit told Siliconrepublic.com. Island mentality “We also have collaborations in the US with National Science Foundation (NSF) centres like the metallic biomaterials centre in North Carolina, where we have an NSF and SFI [Science Foundation Ireland] joint project, which has just commenced. “Although Ireland is an island, we don’t have an island mentality because we can’t.” The Galway effect can’t be denied, Pandit added, noting that there are 25,000 people employed within the medtech sector in Ireland, a third of whom are based in the county. “The population of Galway is around 250,000 people so, when you walk on the streets of the city, maybe nearly every tenth person is going to be in the medical devices sector,” he said, with a sense of pride. What a difference 14 years make Pandit has been closely involved with the Irish life sciences sector since he moved here back in 2003 and, in that time, he has seen the country go through some major changes, economically and culturally. Within medtech however, he has seen only an upward trend, despite the 2008 crash. “When I moved to Ireland in 2003, there were only two medical start-up companies in Galway – now we have 20,” he said. One area that Pandit and Cúram will be particularly focused on is chronic diseases. Other growing sectors include tissue engineering, intermediary medicine and neuromodulation. “We don’t have a big critical mass yet [within minimally invasive devices] but we would like to be in that space,” he said, “but we should be there because that’s where the sector is moving.” Growth of IoT in medtech One thing becoming more apparent, however, is the need for all medtech device manufacturers to embrace the potential of the internet of things (IoT). Even now, tech giants such as IBM are using machine learning platforms such as Watson to gather medical data to cure disease, while Apple is collecting health data from iPhones and other devices. With this in mind, other makers need to step up to the mark to allow their devices to be better utilised, for both the patient and the doctor. Where Cúram comes in, Pandit said, is to try to find where the sector is lacking, in order to make a splash in an otherwise competitive space. “[IoT] is a highly competitive space and industry is very interested in it,” he said. “It is going to be a hot area in the future and we are going to be a part of it, but we’re going to need to find a niche to be competitive within it.” Cúram has already undergone collaborations with its sister centre, Insight, on a number of projects. “The process [of setting up Cúram] has been quite exciting and there has been a lot of interest,” Pandit concluded. “It is now a matter of moving that research chain along in terms of what the next generation of products are out there that we could develop.”

Tuesday, 14 February 2017

Dr Manus Biggs lab at CÚRAM has recently acquired a new Photonic Professional GT printer ‘Nanoscribe’ that provides submicrometer features with easy and fast fabrication along the 3D printing workflow. This next generation 3D laser lithography system combines two writing modes in one device: an ultra-precise piezo mode for arbitrary 3D trajectories and the high-speed galvo mode for fastest structuring in a layer-by-layer fashion. The system offers a high degree of automation for direct manufacturing and allows for the fabrication of high-resolution photo masks and other direct write applications.   “This technology allows the development of devices and structures with sub-cellular dimensions and has the potential for impact in a number of projects that are ongoing at CÚRAM” says Dr Biggs, who has established a research programme in nanofabrication of electrically active biomaterials within CÚRAM. His research integrates material science, electronic engineering, top-down nanofabrication techniques and biological functionalization strategies in developing next generation biomaterials platforms.   Currently Dr Biggs is applying nanofabrication techniques to novel classes of electrically conducting polymers to enhance integration of implanted neuroelectrodes or promote functionality of the brain-computer interface. Nanoscribe is the highest resolution commercially available micro 3D printer and provides CÚRAM’s researchers with the technology to manufacturenano-structures with a wide variety of uses, from diagnostics, to bio sensors and 3D scaffolds.

Wednesday, 30 November 2016

CÚRAM have teamed up with US based medical device startup Acuitive Technologies to work on an exciting biomaterial that has the potential to become a paradigm changing material for numerous musculoskeletal applications. The project is titled “The MSC intracellular signalling response to bioactive citric acid composite soft-tissue anchors”. This project will explore the role of citrate-based resorbable polymers in inducing differential cell function and in promoting the activation specific regenerative pathways. Acuitive Technologies, Inc. was founded in 2013 by a highly experienced management team that is devoted to pursuing material technologies improving medical device performance and patient outcomes. Increasing patient activity levels and extended lifespans have heightened the demand for advanced orthopedic implant technology. ATI’s focused approach on implant device innovation is aimed at improving the integration between the body's host tissue systems and such medical devices. Using technologies, evolutionary designs, and effective partnerships, ATI intends to preserve and or regenerate normal host tissue. Citrate polymer is a novel platform technology based on citric acid as the building block material. Citric acid is commonly used in anti-infective, anti-viral and anti-bacterial products. It is also an integral part of human bone (approximate 5%) so that when it is modified by other selected functional molecules, the citrate polymer may mediate bone growth, promote osteo-conductivity, facilitate osteo-inductivity and stimulate local angiogenesis. Furthermore, this citrate polymer can be engineered to be fully resorbed in a time-phased surface erosion process with low chronic response leaving behind chemical by-products mimicking natural host tissue composition.    The lead investigator on this project Manus Biggs, aims to use his expertise in investigating the formulation and fabrication of a regenerative bone-ligament anchor through functional citrate-based resorbable polymers. Yury Rochev will be collaborating on the project. According to James Malayter, Cofounder and Chief Technical Officer of Acuitive, this project is relevant because it represents an opportunity to both improve consistency in clinical results and to lower overall health care costs.  Previous bioresorbables essentially act as spacers in bone that degrade in a more unpredictable fashion in the hope that bone will heal into the degraded space.  Citrate polymer shows promise in being more biocompatible in its degradation and more bioactive, which could result in faster healing with fewer complications of inflammation currently experienced using previous generations of biodegradables. Ultimately, citrate polymer may be able to supplant many metal appliances, and this could dramatically reduce costs of removal surgeries and their complications. Creating outcomes and cost efficiencies becomes a valuable asset in our current and future healthcare environment.

Friday, 14 October 2016

On October 14th we launched the CÚRAM MedTech Minds Industry Breakfast Series. The event held in the Meyrick Hotel, was officially launched by Minister of State for Gaeltacht Affairs and Natural Resources, Seán Kyne T.D. Minister Kyne spoke on the importance of MedTech to our local and national economy and the important role that CÚRAM will play in growing the MedTech ecosystem. Will your project still have value if it takes twice as long and is half as good? The distinguished speaker of the event was Arthur Rosenthal. Arthur has filled senior research and product development executive roles for medical technology companies for over 40 years. He has successfully directed commercialization efforts for hundreds of novel medical products. Being the first speaker in the series it was appropriate that Arthur’s talk was titled “A Real World Perspective of Medical Device Development”. The presentation comprised of three components: Understanding of Successful Commercial Products and Industry Dynamics, Understanding the Nature of Unsolved Problems and Understanding Funding Preferences. Arthur kicked off with an Overview of the Global MedTech landscape which featured insightful M&A Analysis provided by Piper Jaffray. Art went on to highlight the technologies that have been of most interest to the large multinationals and the importance for startups and small SMEs to follow the money. He then went on to discuss the possible way forward and provided a nice overview of quality of life outcomes and explained that universal problems remain development targets. He concluded with a reality check "No Dough, No Go" and the importance for entrepreneurs to ask “Will your project still have value if it takes twice as long and is half as good” More about Arthur:  A former Chief Scientific Officer of Boston Scientific from January, 1994 to January, 2005 and VP Vice President of Research and Development at Johnson and Johnson Medical Products, Inc. from April, 1990 to January, 1994 and more recently Chief Executive Officer of two start-up companies, Labcoat, Ltd. and Cappella, Inc., both developing cardiovascular medical devices. He has been a Professor of Practice in Translational Research in Boston University's College of Engineering since January 2010, where he oversees biomedical engineering innovation. Arthur serves on the CÚRAM Industry Advisor Board .

Friday, 2 September 2016

On September 2nd 2016, the first ever CÚRAM Researcher Orientation Day took place at NUI Galway. Overall, 36 CÚRAM-funded researchers (post-graduate students, post-doctoral researchers and research associates) from all partner universities attended the event. Orientation day also saw the formation of our researcher committees. Emmanouil Kasotakis has taken on the role of Chairperson of The CÚRAM Post-doctoral Council. This council aims to strengthen the career prospects of our senior researchers. The post-graduate students also formed a committee – The CÚRAM Young Researcher Leadership Council. This council aims to increase the communication between post-graduate researchers and to build up a strong and supportive community. The Young Researcher Leadership Council will be organizing a student-led event to coincide with the Annual Retreat in 2017. In the afternoon, we were delighted to have Prof. Brian Trench, science communication guru, speak to us on the topic of “Telling Your Story, Communicating Your Research”. Here, Prof. Trench explored the reasons and methods for taking on public engagement as an opportunity rather than a burden. We had great feedback from members of the ~100-strong audience coming from the schools of science, medicine & engineering at NUI Galway, as well as CÚRAM-funded researchers from across Ireland. Many thanks to Prof. Trench for a really insightful and stimulating presentation which provoked a very interesting discussion!

Wednesday, 22 June 2016

Dr Dimitrios Zeugolis recently hosted the very successful   ‘Ireland - Japan Biomaterials and Tissue Engineering Meeting’ on June 22nd and  23rdin the Hotel Meyrick, Galway. The meeting was opened by Dr. Jim Browne, President of National University of Ireland Galway and Her Excellency Ms Mari Miyoshi, the Ambassador of Japan to Ireland. In attendance was Professor Nobuo Ueno, Director of the Japan Society for the Promotion of Science London and Dr Dara Dunican from Science Foundation Ireland. The Conference was held as part of the Science Foundation Ireland (SFI) International Strategic Cooperation Award (ISCA) Japan programme, which aims to strengthen and improve relationships between researchers in Ireland and Japan. Seven Japanese scientists with expertise in functional biomaterials, tissue engineering, nanotechnology and stem cell technology presented at the conference. They represented prestigious Japanese institutions including the University of Tokyo, Kyoto University and RIKEN. These were complemented by presentations from leading researchers from NUI Galway and other Irish institutions.

Tuesday, 31 May 2016

The first CÚRAM Annual Scientific Retreat took place on May 31st and June 1st in Kilronan Castle, Ballyfarnon, Co. Roscommon. The two-day event saw CÚRAM researchers presenting their work in front of the CÚRAM Scientific Advisory Board. It was an excellent opportunity for exchanges and discussion with CÚRAMs Scientific Advisory Board and keynote speakers including Mr Kevin Bennet, Mayo Clinic, William Wijns, Cardiovascular Center Aalst, Andreas Lendlein, Helmholtz-Zentrum Geesthacht, Fijs van Leeuwen, Leiden University Medical Centre. Academic showcases were presented by Jeremy Simpson, Conway Institute, University College Dublin, Caitriona O’Driscoll from the School of Pharmacy, University College Cork, Madeleine Lowery, School of Electrical, Electronic and Communications Engineering, University College Dublin, Gearóid Ó Laighin from Electronic Engineering, NUI Galway and Martin O’Donnell from the HRB Clinical Research Facility at NUI Galway. Students who presented over the two days included Marc Fernández, Paolo Contessotto, Aniket Kshirsagar, Maura Tilbury, Vivien Stuettgen,  Aitor Larrañaga, Séamus Caulfield, Sarah Jarrin, Jared Gerlach, Ivor Geoghegan, Adam Raymakers and Brendan Dolan Entrepreneurial and industry showcases were presented by Mr Ronan Byrne, Entrepreneur and former CEO of ClearSight Innovations and Mr Ronan Rodgers, Director of Research and Development at Medtronic, Galway. A highlight of the retreat on the first evening were the Science Soundbytes presentations by Juhi Samal, Isma Liza Mohd Isa, Ivor Geoghegan and Dilip Thomas followed by a researcher-led Panel Discussion with the Scientific Advisory Board.

Contact CÚRAM

+353 (0) 91 495833