Sustainable treatment technologies using mixted waste media to mitigate agricultural contaminants in drainage systems

Start date: 01/11/16           End date: 31/10/19

Funder:  Marie Skłodoswka Curie Innovative Training Network

Principal Investigator: Dr Mark Healy (NUI Galway), Prof Owen Fenton (Teagasc)

Objective:

Agricultural production in Europe has significantly damaged soil and water resources, ecosystem biodiversity, socio-economic well-being and contributed to climate change. Further intensification of production is expected, to ensure food security for population growth, but this must be sustainable to minimise future environmental impacts and negative externalities.Addressing this legacy and improving the quality and quantity of these critical natural resources for future use requires innovative sustainable management concepts, which must consider environmental, technical, social and economic factors. Decision-making frameworks and predictive tools must also be developed to implement sustainable agricultural practices and devise measures to mitigate impacts. These approaches must be developed from the farm- to catchment-scale and consider the cycling of nutrients and pollutants through the continuum of the atmosphere-soil-surface water-groundwater systems within European agricultural landscapes. Meeting these challenges requires a more integrated analysis represented in this project.

INSPIRATION (managing soil and groundwater impacts from agriculture for sustainable intensification) is a multidisciplinary European Training Network composed of 26 partners across 8 European countries, which will research fundamental science, natural processes, monitoring approaches, modelling and decision-making tools, innovative technology applications and management practices in the field of sustainable agriculture. The network will provide high-quality research training to young scientists, through 15 fully-funded Early Stage Researcher (PhD level) fellowships. The academic partners include leading research groups in this field. The non-academic and industry partners include all stakeholder interests (regulators, advisory bodies, water utilities, consulting firms, commercial R&D, technology vendors, SMEs and multinationals). The team of 15 fellows employed by INSPIRATION will research scientific topics which cover a wide range of important scientific, technical and management problems within the training themes described below. The project has an international advisory group and will undertake a comprehensive programme of knowledge transfer activities with other scientific networks and professional bodies in this field.

Outputs

Conference papers:

Ezzati, G., Healy, M.G., Daly, K., Christianson, L., Feyereisen, G., Thornton, S., Fenton, O. 2017. Feasbility matrix to identify locally sourced mixed media to mitigate agricultural pollutants in land drainage. ASA, CSSA, SSSA International Annual Meeting. Oct 22 - 25, Tampa, Florida.

 

 

The mitigation of soil and groundwater impacts using mixed waste media

Start date: 1/6/18          End Date: 31/5/21

Funder: Marie Skłodowska-Curie Innovative Training Network

Principal Investigator: Dr Mark Healy (NUI Galway), Mr Mark Bowkett (T.E. Laboratories Ltd.), Prof Owen Fenton (Teagasc)

Objective:

INSPIRATION (managing soil and groundwater impacts from agriculture for sustainable intensification) is a multidisciplinary European Training Network composed of 26 partners in 9 European countries, which aims to develop low-technology management practices, monitoring approaches, modelling and decision-making tools, and innovative technology applications in the field of sustainable agriculture by a combination of fundamental and applied science (www.inspirationitn.eu). The research focuses on understanding and predicting the environmental fate of nutrient and organic pollutants from agricultural practices and managing their impact on soil, water and climate systems to ensure sustainable production. It links lab- to catchment-scale studies of biogeochemical processes with field-scale evaluation of novel monitoring and management concepts, using state-of-the-art methods. The network will provide high-quality research training to young scientists, through 15 fully-funded Early-Stage Researcher (PhD level) fellowships. The network includes leading research groups, regulators, advisory bodies, water utilities, consulting firms, commercial R&D and multinationals. The project has an international advisory group and will undertake a comprehensive programme of knowledge transfer and outreach activities with other scientific networks and professional bodies in this field. 

This is an industry-based PhD and the project will focus on the mitigation of soil and groundwater impacts from agriculture using mixed waste media. The main objectives of the PhD will include the following:
1. Identification of locally sourced raw materials across partner countries used in isolation or in combination that have the capacity to mitigate mixed contaminants and are safe to recycle back on land. 
2. Evaluation of performance and biochar and other potential media in this application.
3. Development of methodology to measure NKP and other contaminants in the media. Passive sampling and microfluidic technologies will be considered.
4. Development of in-process monitoring to provide information for modelling on lab pilot plant.
5. Field deployment of measuring technology to monitor performance of media in a field application.

 

Treatment of contaminated land using a biochar/mixture

Start date: 1/7/17           End date: 31/6/19

Funder: H2020-Marie Skłodowska-Curie Actions (MSCA) Individual Fellowship

Principal Investigators: Dr Mark Healy, Dr Florence Abram, Dr Alma Siggins

Budget (€): 187,866

Objective:

Waste disposal and treatment is a major source of contamination of soils, surface and groundwater, and accounts for 35% of the 1.1 million contaminated sites in Europe. Leaching of the organic solvent trichloroethylene (TCE) into groundwater has been identified as a primary issue with unlined landfills, affecting up to 70% of leachates tested. Mainly used as a metal degreaser and dry-cleaning reagent, TCE is difficult to treat; current treatment methods, such as anaerobic digestion or air stripping, are ineffective and/or expensive. This project will investigate the use biochar, or other appropriate media, for treatment of TCE contaminated water via two technologies - permeable reactive interceptors (PRIs) and permeable contaminant retaining filter (PCRF) bags. This novel, low-cost solution will address the requirements of European Union (EU) legislation, including the Water Framework Directive (WFD).



 

Phosphorus recovery for fertilizers from dairy processing waste - Project 1

Start date: 01/10/18    End date: 09/09/21

Funder: Marie Skłodoswka Curie Innovative Training Network

Principal Investigator: Dr Mark Healy (NUI Galway), Prof Owen Fenton (Teagasc)

Background:

Phosphorous (P) is essential for life, but it is a finite resource. The industrialization of food production in order to feed a rapidly expanding population is giving rise to serious leakage of P through the global agricultural food system. This is particularly pertinent in the dairy industry, where losses of P are causing environmental damage and ultimately putting food safety at risk. About 2-3% of the incoming milk for dairy processing is lost during cleaning operations, via washing steps and through occasional milk spills.4 The production of dairy products such as cheese and yogurt gives rise to P-rich dairy processing waste (DPW), and as a whole, the dairy industry is the EU’s largest industrial food wastewater contributor and one of the main sources of P-rich industrial effluent.5,6 The recent abolition of EU milk quotas (2015) has resulted in a 2.8% annual growth in milk production with a corresponding increase in DPW.7 If the management of DPW does not improve, then leakage of nutrients will continue to intensify, leading to environmental problems such as the eutrophication of water bodies by P run-off from soil.

In 2014, rock phosphate was included in the list of EU critical raw materials due to its importance to the EU agrifood sector.8 Europe has no significant phosphate mines and the concentration of rock P in geopolitically sensitive regions was identified as a threat to European food security. The fertilizer industry is the largest user of P (1.1 million tonnes in 20159) therefore alternative sources to rock phosphate are urgently needed. The EU, through its Circular Economy Package (2016), has prioritized the recovery and safe reuse of plant bioavailable P from food and municipal waste streams, including DPW.10 This will add resilience in the event of disruption of supply to the EU while simultaneously mitigating the environmental consequences of P leakage.

To date, finding a solution to reusing P from DPW, other than direct land spreading of dairy wastewater sludge, has been hampered by a lack of available technology, suitably trained personnel and a market for the products. To stimulate innovation in technologies for producing substitutes for mined phosphate rock from P-rich wastes, the EU has proposed changes to the Fertilizers Regulations, which would permit CE labeling of waste-based fertilizers in order to ease their access to the single market11. This opens opportunities for the dairy processing industry to innovate by adapting technologies and new waste management strategies to minimize P leakage while benefiting from emerging market opportunities. To ensure the long-term economic and environmental sustainability of these non-mineral fertilizer products, they will need to provide plant crops with required nutrients and should not negatively impact on the environment or adversely affect the safety of food or animal feedstuff.

To achieve the goal of phosphorus recovery for new fertilizers from DPW, we must conduct robust scientific investigations, develop and test new technologies, train a new generation of researchers, re-configure current DPW processes, and share information and findings with industry, policymakers, standards bodies, and regulators. Our proposed multi-disciplinary, intersectoral research programme will directly address this need.

REFLOW will provide a unique opportunity for researchers to obtain the knowledge and skills needed to develop and deploy new technologies for socially and environmentally responsible innovative management of DPW, and to stimulate new markets for recycled P. This ETN will provide advanced training to a new generation of high-achieving early-stage researchers through a structured PhD programme, focused on three overall research goals.

1. To develop and demonstrate processes for the recovery and reuse of phosphorous (P) products from DPW;

2. To establish their fertilizer value and optimum application rates through laboratory protocols and field trials;

3. To address the environmental, social, food safety and economical challenges, ultimately finding marketdriven solutions for the new processes and fertilizer products.

Project 1: Modeling soil P dynamics and P cycling in dairy waste amended soils (DPW)

Objectives: To model the fate and transport of P in novel fertilizers from DPW, added to soil and its impact on P soil cycling processes. Undertake batch, column and field plot experiments using soils from a long term P trial: Monitor the fate and transport of 33P radiolabelled DPW fertilizers added to soils (scintillation counter) in incubation and column experiments using intact soil cores from baseline soils that have never received P and soils that have undergone build-up and depletion cycles. Measure leaching losses from column experiments; At plot scale, P fractions and available P trends over a full grass growth year will be established on baseline plots and plots receiving fertilizers from DPW to establish changes in available P concentrations at varying application at rates, measured in conjunction with grass growth mesurements; Results from the incubation, column and plot scale experiments will be synthesised to model chemical and biological interactions between P derived from dairy waste and native soil P.

Expected results: A time-series database of available P concentrations and grass growth on soil under baseline conditions, and soils receiving DPW fertilizers. A database of changes in soil P fractions following the addition and assimilation of dairy waste to soils that have never received P and soils that have undergone build up and depletion cycles. Leaching P losses from baseline soils that have been amended with dairy waste; A model of soil P cycling and physico-chemical processes following DPW fertilizer additions; Guidelines on management of DPW fertilizers in terms of timing and rates of application on grassland soils, to maximise plant uptake and minimise nutrient losses to water.

 

Phosphorus recovery for fertilizers from dairy processing waste - Project 2

Start date: 01/10/18    End date: 09/09/21

Funder: Marie Skłodoswka Curie Innovative Training Network

Principal Investigator: Dr Mark Healy (NUI Galway), Dr Karen Daly (Teagasc)

Background:

Phosphorous (P) is essential for life, but it is a finite resource. The industrialization of food production in order to feed a rapidly expanding population is giving rise to serious leakage of P through the global agricultural food system. This is particularly pertinent in the dairy industry, where losses of P are causing environmental damage and ultimately putting food safety at risk. About 2-3% of the incoming milk for dairy processing is lost during cleaning operations, via washing steps and through occasional milk spills.4 The production of dairy products such as cheese and yogurt gives rise to P-rich dairy processing waste (DPW), and as a whole, the dairy industry is the EU’s largest industrial food wastewater contributor and one of the main sources of P-rich industrial effluent.5,6 The recent abolition of EU milk quotas (2015) has resulted in a 2.8% annual growth in milk production with a corresponding increase in DPW.7 If the management of DPW does not improve, then leakage of nutrients will continue to intensify, leading to environmental problems such as the eutrophication of water bodies by P run-off from soil.

In 2014, rock phosphate was included in the list of EU critical raw materials due to its importance to the EU agrifood sector.8 Europe has no significant phosphate mines and the concentration of rock P in geopolitically sensitive regions was identified as a threat to European food security. The fertilizer industry is the largest user of P (1.1 million tonnes in 20159) therefore alternative sources to rock phosphate are urgently needed. The EU, through its Circular Economy Package (2016), has prioritized the recovery and safe reuse of plant bioavailable P from food and municipal waste streams, including DPW.10 This will add resilience in the event of disruption of supply to the EU while simultaneously mitigating the environmental consequences of P leakage.

To date, finding a solution to reusing P from DPW, other than direct land spreading of dairy wastewater sludge, has been hampered by a lack of available technology, suitably trained personnel and a market for the products. To stimulate innovation in technologies for producing substitutes for mined phosphate rock from P-rich wastes, the EU has proposed changes to the Fertilizers Regulations, which would permit CE labeling of waste-based fertilizers in order to ease their access to the single market11. This opens opportunities for the dairy processing industry to innovate by adapting technologies and new waste management strategies to minimize P leakage while benefiting from emerging market opportunities. To ensure the long-term economic and environmental sustainability of these non-mineral fertilizer products, they will need to provide plant crops with required nutrients and should not negatively impact on the environment or adversely affect the safety of food or animal feedstuff.

To achieve the goal of phosphorus recovery for new fertilizers from DPW, we must conduct robust scientific investigations, develop and test new technologies, train a new generation of researchers, re-configure current DPW processes, and share information and findings with industry, policymakers, standards bodies, and regulators. Our proposed multi-disciplinary, intersectoral research programme will directly address this need.

REFLOW will provide a unique opportunity for researchers to obtain the knowledge and skills needed to develop and deploy new technologies for socially and environmentally responsible innovative management of DPW, and to stimulate new markets for recycled P. This ETN will provide advanced training to a new generation of high-achieving early-stage researchers through a structured PhD programme, focused on three overall research goals.

1. To develop and demonstrate processes for the recovery and reuse of phosphorous (P) products from DPW;

2. To establish their fertilizer value and optimum application rates through laboratory protocols and field trials;

3. To address the environmental, social, food safety and economical challenges, ultimately finding marketdriven solutions for the new processes and fertilizer products.

Project 2: Fertilizer equivalence value (FEV) of DPW, REFLOW Fertilizers & Smart Farming

Objectives: To establish the FEV of REFLOW products benchmarked against commercial rock phosphate fertilizer, determine optimum formulation ratios, and application rates for different soil types (WP3): Collect DPW seasonal related data from a range of dairy factories across consortium and characterise DPWs for physical and chemical (N/P/K, metals, persistent organic pollutants e.g. PCDD/F, dioxins) characteristics, (ICP-OES, XRF, Kjeldahl, consolidated isotope dilution GC-MS-MS, HPLC-Q-TOF); Determine formulation ratios to prepare REFLOW products with NKP equivalent to rock phophate products, test using laboratory pot trials and use to estimate FEV; Validate the FEV (N/P/K) of REFLOW products using data from Irish French and Daniah field trials(WP2); Develop a model and guideline for agriculture advisors for optimum mode, rate and timing of application of the REFLOW products depending on soil type and climate in order to achieve highest crop yield and minimum environmental impact; Develop a smart app for farmers and agricultural advisors providing specific information on application rates and timing for DPW and REFLOW products for soil type and forage crops; Nutrient mapping to determine P leakage from a dairy processing plant

Expected results: FEV of DPW and REFLOW fertilizers for benchmarking against mineral fertilizers - determine financial value. Database of nutrients, heavy metals, organic pollutants for achieving CE compliance within new fertilizer regulations. Protocol (and smart App) for farm advisory services on application rates and timing for DPW and REFLOW products for different soil types and forage crops.

 

Bauxite residue for phosphorus recovery

Start date: 01/09/15                                    End date: 31/08/18

Funder: EPA

Principal investigators: Dr Ronan Courtney (University of Limerick), Dr Mark Healy (NUI Galway)

Objective:

This project aims to illustrate the value contained in bauxite residue. It aims to: unlock the volume of various rare earths from bauxite residue and increase the range and yields of recovered raw materials, illustrate the re-use potential of bauxite residue, push Ireland to the forefront in the area of raw materials processing technologies.

Outputs:

Journal papers:

Cusack, P.B., Healy, M.G., Ryan, P.C., Burke, I.T., O' Donoghue, M.T., Ujaczki, E., Courtney, R. 2018. Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments. Journal of Cleaner Production 179: 217 - 224.

High status waterbodies: managing and optimising nutrients

Start date: 1/12/13           End date: 30/11/18

Funder: DAFM/Teagasc

Principal Investigator: Dr Mark Healy (NUI Galway and Dr Karen Daly (Teagasc) (on Teagasc Walsh Fellow). Project investigators: Dr Karen Daly (Teagasc), Mary Ryan (Teagasc), Prof. Phil Jordan (UU), Dr Donnacha Doody (AFBI), Dr Mark Healy (NUI Galway)

Budget (€): 105,940

Objective:

The overall objective of this research is to provide evidence-based strategies for nutrient management on farms in sensitive catchments.  The evidence will be derived from a research agenda examining the optimum use and management of nutrients as a Source and the hydrological Pathways controlling the delivery of this source to surface waters.  This Ph.D. research will focus on the predominant soils and current nutrient management in case-study catchments. The overall objective of the work is to optimise phosphorus (P) use on the predominant soil types in case study catchments so that farmers can continue to farm, yet, minimise the risk of P loss to waters. The case-study catchments selected for this work are likely to have a high proportion of peat soils and previous research on phosphorus in these soils has highlighted significant differences in their P chemistry compared to mineral soils, specifically,  low sorption capacity for phosphorus and poor P retention in these soils. These findings have implications for sustainable use of fertiliser and slurry in these areas.  There is a gap in our knowledge on the efficient use and management of nutrients on high organic matter soils, and this project will integrate agronomic experiments with rainfall simulator work to describe P assimilation and transport of applied nutrients to these soils.  The work in this study will focus on the predominant mineral and peat soils in the selected case-study catchments.

Outputs:

Conference papers:

Gonzalez-Jimenez, J.L., Healy, M.G., Roberts, W.M., Daly, K. 2016. Grass yield and phosphorus fractions in organic soils. Organic Phosphorus in the Environment: Solutions for Phosphorus Security Conference. Sept. 5-9, Lake District, England.

Use of soil water characteristic curve to determine solute travel times in sensitive catchments

Start date: 1/9/15           End date: 31/8/18

Funder: NUI Galway

Principal Investigator: Dr Bryan McCabe and Dr Mark Healy (NUI Galway), and Dr Owen Fenton (Teagasc)

Budget (€): c. €60,000

Objective:

The soil water characteristic curve (SWCC) describes the volumetric water content of a soil at a given matric potential. The SWCC allows elucidation of solute transport timescales. Contexts in which the SWCC may be successfully used include the determination of ‘lag time’ between good agricultural practices and the determination of travel times of contaminated plumes arising from industrial practices. The proposed research work aims to use the centrifugal method to determine solute transport in different soil types and in different contexts.

Outputs:

Measurement and abatement of ammonia emissions from agriculture

Start date: 1/5/16           End date: 31/9/20

Funder: Teagasc

Principal Investigators: Dr Mark Healy (NUI Galway), Dr Gary Lanigan and Dr William Burchill (Teagasc), and Dr Barbara Amon (ATB, Germany)

Budget (€): 88,000

Objective:

Nitrogen contained in slurry is an important source of N on Irish farms. However, a large proportion of this N can be lost from slurry via ammonia (NH3) gas emissions. These emissions are also detrimental to the environment. Agriculture contributes 98 % of the total NH3 emissions in Ireland. The cattle sector is by far the largest source of these emissions, comprising 72% of total emissions, with these emissions arising principally during animal housing and slurry storage (48%). This is important given that Irish livestock numbers are expected to grow post quote while EU national NH3 emissions targets are set to be more stringent up to 2030. Slurry storage emissions is one potential area were NH3 emissions can be reduced on Irish farms. However, little is known about the extent of slurry storage emissions in Ireland and the effectiveness of strategies to reduce NH3 emissions under Irish conditions. 

The objectives of this MSc will be to assess the effect of a number of potential strategies to reduce emissions from slurry storage. The effect of these strategies will be quantified using twelve concrete slurry storage tanks (volume of 1 m3) at a purpose built slurry storage facility.  A dynamic chamber approach will be used to estimate NH3 loss with gaseous emissions measured at the chamber inlets and outlets using a photoacoustic gas analyser and/or acid trapping. This will allow the simultaneous measurement of NH3, methane, nitrous oxide and carbon dioxide, and will allow assessment of NH3 loss and any positive or negative feedback these strategies have on greenhouse gas emissions.

Assessment of materials used in land drainage systems

Start date: 1/9/18           End date: 31/8/22

Funder: Teagasc

Principal Investigators: Dr Patrick Tuohy and Dr Owen Fenton (Teagasc), Dr Mark Healy (NUI Galway)

Budget (€): 88,000

Objective:

The installation of land drainage systems is widespread in poorly drained regions of the country. The performance and working life of these drainage systems is dependent on the quality and suitability of the materials used in the field drains, and on keeping such drains well maintained. The range of materials available in terms of pipes and pipe envelopes does not easily fit into any standard classification, and many different combinations of both are in use. Stone aggregates, used as drain envelope, often have a geographical bias due to local geology and preference. The deposition of iron ochre in drainage pipes is also a major problem in iron-rich soils. Therefore, there is a huge variation in the performance and life-span of drainage systems.

This research aims to assess the performance, capacity and life-span of a range of drainage materials (pipe and envelope) in a range of soil types to establish best practice in material specification and design. There will be scope to assess the performance of some alternative envelope materials to offset the cost associated with stone aggregate and to investigate the nutrient attenuation capacity of stone media. Another element of the study will examine methods of reducing and the remediation of iron ochre deposition in drainage systems. The appraisal of drainage system material performance will inform farmers, contractors and other stakeholders involved in land drainage works of best practice in system design. A reduction in and the remediation of iron ochre deposition in drainage systems will improve drainage system performance and increase life-span. Such measures will ultimately improve the return on capital invested in land drainage works. If a cheaper alternative to stone aggregate is found to be appropriate, this has the potential to substantially reduce the cost of land drainage, thereby increasing the economic viability of land drainage works.

Optimizing dairy farmyard infrastructure for the management and treatment of soiled water

Start date: 01/10/18           End date: 31/09/22

Funder: Teagasc

Principal Investigator: Drs Mark Healy and Alma Siggins (NUI Galway), Dr Pat Tuohy , Dr Daire O' Huallachain and Prof Owen Fenton (Teagasc)

Budget (€): 88,000

Objective:

The removal of milk quota restrictions, coupled with Food Wise 2025 targets, has heralded an increase in dairy herd sizes. This expansion in dairy production has resulted in increased volumes of dairy soiled water (DSW). DSW is an effluent from the milking parlour, collecting yards, roadways and other hard-standing areas, and consists of a dilute mixture of cow faeces, urine, milk, detergents and sediment. Approximately 10,000 litres of DSW is produced per cow per year on Irish dairy farms. DSW is potentially a major source of pollution; therefore measures are required for its management, storage, treatment and disposal. Options for the treatment of DSW to reduce nutrient load and lessen the environmental impact have not been employed to any significant extent. These include solid separation, nutrient attenuating amendments, filtration systems and Integrated constructed wetlands (ICW). There is little guidance regarding the optimal design, construction, operation and maintenance of suitable DSW treatment systems. This project will address gaps in knowledge on the status of DSW, review current practices and attitudes towards its management and control, assess the capacity, effectiveness and economic advantages of DSW treatment systems and outline a strategy to optimize their usefulness.