An international scoring system for self-reported health complaints in adolescents

Ulrike Ravens-Sieberer¹, Michael Erhart¹, Torbjorn Torsheim², Jorn Hetland³, John Freeman⁴, Mia Danielson⁵, Christiane Thomas¹ and The HBSC Positive Health Group

Introduction

Subjective health complaints like headache, backache, feeling low etc. are common in adolescence¹–³ and tend to occur in cluster rather than as single symptoms.¹,⁴,⁵ In few instances these symptoms are related to a defined diagnosis or disease.⁶ Previous research has found that these symptoms tend to increase with age and are more prevalent in girls.⁷

With trends of globalization in public health, assessment of cross-national differences in subjective health becomes increasingly important.⁷–¹⁰ Cultures might not only differ in the frequency of psychosomatic health complaints, but also in the specific complaints expressed and may be in the exact meaning of the concept. The comparison and interpretation of previous studies is limited by methodological differences regarding e.g. the definition of symptoms and time frame of reporting.

A previous study found the pattern of adolescents subjective health complaints to be consistent across countries, although the prevalence decreased from Finnish to Scottish, Polish and Norway students.³ However another study in Scandinavians aged 15 and older observed no clear differences between Sweden, Denmark, Norway and Finland examining any complaints at all. But with regards to substantial complaints, the Swedes had the highest reports, while the Finnish had the fewest reports.¹¹

Background: Aimed to develop a unitary scoring system for the ‘Health Behaviour in school-aged Children’ (HBSC) symptom checklist that would facilitate cross-national comparisons and interpretation. Rasch measurement analysis and investigation of differential item functioning (DIF) were conducted.

Methods: Data were obtained from the ‘WHO collaborative study HBSC 2001/2002’. A total of 162 305 students aged 11, 13 and 15 years from 35 European and North American Countries were surveyed. Unidimensionality of the items and local independence were tested using means of confirmatory factor analysis. DIF across countries, age groups, and gender was investigated using a logistic regression procedure. Item and person parameters were estimated according to the Rating Scale Model (RSM).

Results: All items proved to be unidimensional. One item displayed noticeable DIF across countries and was discarded. The remaining items were functioning equally across subgroups. The RSM analysis resulted in Rasch model conform item parameter estimation. Infit mean square values between 0.84 and 1.35 revealed acceptable item fit. Conclusion: The control of DIF enables comparable and unbiased assessment of subjective health complaints across countries, age groups and gender. A scoring algorithm could be developed which enables a cross-cultural comparable and interval-scaled assessment of subjective health complaints.

Keywords: children and adolescents, differential item functioning, HBSC-Health Survey, international comparison, Rasch analysis, subjective health complaints

1. School of Public Health, WHO Collaborating Center for Child and Adolescent Health Promotion; University of Bielefeld, Germany
2. University of Bergen, Norway
3. Research Centre for Health Promotion, Bergen, Norway
4. Queen’s University, Kingston, Ontario, Canada

Correspondence: Prof. Dr Ulrike Ravens-Sieberer, School of Public Health, Director WHO Collaborating Center for Child and Adolescent Health Promotion, University of Bielefeld, PB 10 01 31, D-33501 Bielefeld, Germany, tel: +49 521 106 6245, fax: +49 521 106 6433, e-mail: U.Ravens-Sieberer@uni-bielefeld.de

Such investigation calls for measurement instruments that can be applied and compared across populations, languages and demographic subgroups.²,¹² A self-report rating scale that has been used with such a comparative perspective is the Health Behaviour in school-aged Children symptom checklist (HBSC-SCL).⁶,¹⁴,¹⁵ The HBSC-SCL assesses the occurrence of eight common health complaints. The HBSC-SCL has been translated and used in more than 35 countries,¹⁶ but a cross-culturally uniform scoring system is still lacking. The present study presents a scoring algorithm on a sample of 162 305 students from 35 European and North American countries that would ensure such a scoring.

A basic requirement for any scoring system of health complaints is interpretability and consistency across samples. In several previous studies, the scoring of the HBSC-SCL has been based on raw summation of item scores. This scoring system has achieved high reliability,¹⁴ but enables measurement at ordinal scale level only. As an alternative, scoring based on the Rasch model can provide measurement on interval scaled level, which is desirable for epidemiological cross-cultural comparison, trend-studies over time or studies on the influence of environmental factors on health. Rasch models belong to the so-called item response theory (IRT). IRT models assume a test-persons response to an item can be explained by his/her trait parameter value (θ) which can be considered as his/her position on a latent trait continuum and the position of thresholds (δ) between the item answer categories on the same latent trait continuum that is the position where neighbouring answer categories are chosen with the same probability—below δ the lower answer category is more likely above δ the higher answer category is more likely to be chosen. Some IRT models encompass additional model parameters as well. In Rasch model, the probability of choosing an answer category is modelled by a logistic function of the difference between θ and δ. Rasch-based scaling has several properties that are attractive, including a psychologically meaningful model of measurement and statistics of individual
measurement error. Unidimensional constructs can be identified and biased or weak indicators can be detected. If the Rasch model fits the data well the sum of the item-scores represents a sufficient statistic for the response to all items. Examining the single item scores would then not add any crucial psychometric information to the measurement. Applying the HBSC-SCL as a short screening instrument requires setting up thresholds for a noticeable outcome. Rasch-based scaling provides the possibility of linking scores with the meaningful item-content thus helping to define cut-off points.

For a scale to be scored according to the Rasch model, the covariation between the items of the scale has to satisfy the relatively stringent assumptions of local independence and unidimensionality (the item score should not be related to any other item score expect through the contribution of both to the scale score). Two previous studies of the dimensionality of the HBSC-SCL with confirmatory factor analysis (CFA) revealed adequate fit for a one-factor model. A correlated two-factor model (physical and psychological) was clearly superior. However, the correlation between these two factors was extremely high (0.80–0.82). Thus, in the present study, our expectation was that the HBSC-SCL would show sufficient unidimensionality.

Multidimensionality may result in poor Rasch item fit statistics. A way to prevent this is to apply explicit tests of unidimensionality, which might be more sensitive and specific than the CFA analyses which e.g. can fail in the presence of differing item difficulties. Rasch modelling of the HBSC symptom checklist was applied in a recent study. The partial credit model (PCM) was examined in a sample of Swedish adolescents, using the HBSC-SCL. Reversed thresholds—that is at least one answer category is at no position of the latent trait most likely to be chosen (which does not necessarily mean that the answer categories operate in a reversed order)—were found for three items. As a solution, the authors suggested discarding the three mentioned items. The five remaining items showed item characteristic curves that were consistent with the PCM.

This study highlights some of the challenges in applying the Rasch model to existing rating instruments, including the problem of how to deal with violations of the Rasch model assumptions. When reversed thresholds are present, one alternative to discarding items could be to collapse response categories. A problem with collapsing response categories is the potential loss of psychometric information. A second feasible alternative would be to force the threshold estimates being in the right order and to test whether response patterns are consistent with such variants of the Rasch model.

For scales with a uniform set of response categories across items, such as the HBSC-SCL, the Rasch Rating scale model (RSM) may be a good alternative to the PCM. The assumption made in the RSM is that items differ in their location on the latent trait, but that the distance between thresholds and the order of category thresholds are the same across items.

The aims of this study were to investigate:

1. If the actual response behaviour of the tested adolescents on the HBSC-items can be reasonably explained by the assumption of ordered thresholds and a unidimensional latent trait continuum.
2. If the items are functioning in the same way across countries, age groups and gender.
3. If a new scoring algorithm could be established.
4. The results of the new scoring algorithm in terms of demographic differences and the association with health status.
5. The results of the new scoring in terms of cross-national variation and consistency.

Methods

Sample and data collection

Data were obtained from the large cross-national WHO collaborative study ‘Health Behaviour in School-aged Children’ 2001/2002. A total of 162,305 students from 35 countries and regions participated, 51.7% were females, 33.6% were aged 10–12, 34.6% were aged 12–14, 31.8% were aged 14–16.

The sample was selected through a complex multistage sampling procedure. The primary sampling unit was school-class, with self-selection of students. More detailed information about the sample and the sampling frame can be obtained elsewhere. The multistage sampling makes it difficult to compute a single response rate. The available documentation suggest that for a majority of countries, the response rate at the level of school was above 80% with additional dropout at the student-level ranging from 2.4 to 26.0%. Combining all available information the weighted response rate was 75% (authors calculation).

Instrument and variables

The eight items of the HBSC-Symptom checklist ask about how often in the last 6 months the children and adolescents have suffered from the following complaints: headache, stomach ache, backache, feeling low, irritable or bad tempered, feeling nervous, sleeping difficulties, dizziness. The children and adolescents can respond to these questions by choosing one of the following five answer categories: ‘rarely or never’, ‘about every month’, ‘about every week’, ‘more than once a week’ and ‘about every day’. Additional information used for the analyses included the age, gender and self-reported general health status of the respondents.

Statistical analysis

Subjects with missing values in any variable (2.9% of all cases) were omitted from the analysis. A confirmatory factor-analysis was computed (Mplus) by specifying a one-factor-structural equation model across all items using polychoric correlations. Items with loading above 0.4 remained in the item pool. To assess local dependence, the common factor was partialized out of the items and the item residuals were correlated with each other. If the residuals of two or more items correlated above 0.2 with each other, one or more of the involved items were eliminated.

Students with the same level of trait should respond similarly to an item, regardless of their culture, age or gender. Differential item functioning (DIF) occurs when people at the same level of trait but from e.g. different countries respond differently. To examine DIF, we used the logistic regression approach described by Zumbo. Every item serves as the dependent variable in hierarchical ordinal regression models. The goodness of fit of a logistic regression model with the total score being the only covariate was compared with the goodness of fit of a model where the total score, the group and the group × total score interaction were the covariates. The significance of the χ²-changes, as well as the change in the Nagelkerke pseudo-R^2, was investigated. While the first value tells about significant uniform (different locations on the latent trait), non-uniform (different slopes) and absolute DIF, the second statistic gives an impression about the effect size of the DIF. A pseudo-R^2 change of 0.035 has been suggested as a criterion for practically meaningful DIF. We thus set the threshold for a tolerable DIF effect to an R^2 change of 0.035 but acknowledged that other authors proposed quite less restrictive thresholds of 0.07. The analyses were carried out using the PLUM procedure of SPSS.
In the present study, data fit was indicated by the infit mean square statistic, which is based on the residuals between the empirical and the theoretical expected item scores. In line with conventional criteria, a well fitting item would be expected to have an infit mean square between 0.7 and 1.3.

Results

Unidimensionality and local independence
Unidimensionality and local independence were tested using CFA. In the specified one-dimensional model, the item-loadings ranged between 0.52 (Backache) and 0.70 (Feeling low; Irritable-bad tempered). The common factor accounted for 39.9% of the variance in the items. In the next step of analysis, the common factor was partialized out of the items, and the item residuals were correlated with each other. Item residual correlation ranged between 0.01 and 0.12. These values are clearly below the conventional threshold of 0.2, which has been used to indicate a secondary factor or violation of local independence. Running a conventional exploratory factor analysis on the data resulted in only one factor having an eigenvalue >1 (data not shown).

Differential item functioning
Table 1 shows the results for tests of DIF. For the logistic regression DIF procedure examining differences across country, a random sample of 5% of the adolescents from each country was selected as the reference group and contrasted with the 35 country samples (without the selected 5%). The item ‘sleeping difficulties’ displayed sizeable country DIF (R^2-change = 0.045) and thus was excluded from further analysis. All other items remained in the scale because their magnitude of country DIF was below or only slightly above the defined criterion 0.035. None of the eight original items displayed noticeable DIF across age groups and gender.

Rasch modelling
The results of fitting the RSM to the HBSC symptom checklist are shown in table 2. The table includes item parameters estimated from the joint maximum likelihood estimation procedure of WINSTEPS. Parameters were calibrated to a common metric defined by the mean of the item-parameters (set to 50) and their SD (set to 10). It can be seen from the table that the locations of the items differed. The item ‘Irritable’ had the lowest location at 45.0, meaning that responses to this item tap information at a comparatively lower level of the trait than the other items. In contrast, the item ‘dizziness’ had a location at 55.6, providing maximum information about scores above the average of the items.

The table also provides the thresholds for steps between response categories. It can be seen that increasing thresholds (steps between categories) relate to increasing trait levels. The difference between step 2 and 3 was only 0.7 units,
indicating that the middle answer category ‘about every week’ has little discriminatory power. According to the model, those respondents who reported having symptoms ‘about every week’ did not differ appreciably from those responding that they had experienced symptoms ‘about every month’ or from those who reported symptoms ‘more than once a week’.

All items fit the data well according to the RSM. Infit mean square values ranged between 0.84 and 1.35. Using a fairly conservative criterion, only the item ‘backache’ displayed slight misfit according to the recommendations of some researchers, with the actual infit mean square value of 1.35 indicating lower discriminatory power than theoretically expected. The person separation index indicating overall reliability of the measurement was 0.77, (Cronbach’s alpha = 0.78).

The new Rasch scoring algorithm for the HBSC-SCL encompasses summing up the seven item scores. The sum-scores are then non-linearly transformed into Rasch scores (Sample mean = 38.5; SD = 12.1).

Demographic differences

Table 3 shows the mean Rasch score for demographic subgroups, split by gender. For boys and for girls, scores increased with increasing age. A 11 year old girl would on average have a score of 37.3, whereas a 13 year old girl would be expected to have a score of 43.1, indicating a major shift from early to mid-adolescence. Across SES subgroups, there were only minor differences. Young people from intact families had lower scores than other family structures.

Association with self-rated health

Though the self-rated health cannot be viewed as a validity criterion for a scoring algorithm of subjective health complaints, the association between both was assessed because from a theoretical point of view a sizeable relationship could be expected. Table 3 shows the mean Rasch score for respondents with different health rating. Boys (girls) rating their health as ‘excellent’ on average have a score of 33.2 (35.7) whereas boys (girls) with ‘poor’ health rating on average have a score of 48.5 (52.1), indicating a noticeable increase of nearly 1.5 SD.

Cross-national variation and consistency

To be used in a cross-national setting, the symptom checklist should be sensitive to true cross-national differences. To examine the amount of cross-national variation, a series of mixed models with random effects at the country level was computed, using the software MLwiN.33 It can be seen from table 4 that the random cross-national variation in the

Table 4 Random intercept model with random effects for countries

<table>
<thead>
<tr>
<th>Age group</th>
<th>Intercept±b (SE)</th>
<th>Uj (SE)</th>
<th>Eij (SE)</th>
<th>VPC±</th>
<th>95% CI country</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 year olds</td>
<td>Boy</td>
<td>35.05 (0.54)</td>
<td>10.05 (2.45)</td>
<td>148.53 (1.31)</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>Girl</td>
<td>37.19 (0.46)</td>
<td>7.33 (1.80)</td>
<td>139.27 (1.21)</td>
<td>0.050</td>
</tr>
<tr>
<td>13 year olds</td>
<td>Boy</td>
<td>36.47 (0.05)</td>
<td>7.46 (1.83)</td>
<td>133.04 (1.12)</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>Girl</td>
<td>40.53 (0.40)</td>
<td>5.44 (1.33)</td>
<td>101.60 (0.86)</td>
<td>0.051</td>
</tr>
<tr>
<td>15 year olds</td>
<td>Boy</td>
<td>37.53 (0.05)</td>
<td>5.56 (1.14)</td>
<td>120.08 (1.12)</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>Girl</td>
<td>42.85 (0.37)</td>
<td>4.66 (1.14)</td>
<td>83.35 (0.73)</td>
<td>0.053</td>
</tr>
</tbody>
</table>

a: Item parameter based metric (sample mean = 38.5; SD = 12.1)
b: Regression constant = mean Rasch-score
c: Amount of variance accounted for between country differences in the regression constant (mean Rasch scores)
d: Amount of variance accounted for by individual differences in Rasch scores
e: Proportion of overall variance in Rasch scores accounted for by between country differences in the regression constant (mean Rasch scores)
Countries’ mean scores for boys were strongly associated with their mean scores for girls. The Pearson correlations between countries mean scores for 11, 13 and 15 years old boys and girls were 0.93, 0.92 and 0.90, respectively, revealing a high consistency in country Rasch scores for independent subgroups.

Discussion

The main objective of the present article was to develop a scoring system for the HBSC symptom-checklist that would enable fair comparison and interpretation across countries. The main outcome was a unidimensional scoring algorithm based on seven of the eight original items. Previous studies on the HBSC-SCL suggested a two-factor solution (physical and psychological). However our analyses indicated unidimensionality of the HBSC-SCL items. The assumption of a unidimensional latent trait showed to be sufficient to explain the actual response behaviour of the respondents. As the HBSC symptom checklist actually comprises of 8 items only, we would not recommend splitting it into a 5 item and a 3 item domain to be scored using Rasch modelling. Such a model would be less reliable and eventually would show poor person fit. Most important—as the unidimensional Rasch-model already fits the data well—a two-factor model would not add crucial psychometric information to the measurement.

Compared with the more commonly used summed raw score, the Rasch based scaling has major advantages in terms of interpreting severity and content of scale scores. From the results it can be stated that frequent dizziness and backache, for example, are indicators of severe physical health complaints, whereas mild or moderate health complaints are most likely characterized by the absence of all complaints except feeling nervous or being bad tempered. Adolescents with a parameter value of, for example, 60 (Percentile 99) are most likely to be suffering every day from all of the seven complaints except dizziness and backache—which they are most likely to be suffering ‘more than once a week’ (but not ‘every day’). Adolescents scoring at the medium score (40) are most likely to be suffering at least ‘about every month’ from being ‘bad tempered’ or ‘feeling-nervous’ but are most likely to be free (‘rarely or never’) from any of the other health complaints.

It is important to note that the Rasch analysis revealed a higher measurement precision on the higher end of the trait continuum. This finding can be seen as a valuable information for epidemiological screening, as it is more important to distinguish between medium and high severity than between medium and low severity.

The test of DIF revealed that the item ‘sleeping difficulties’ worked differently across the different countries, indicating that this item may introduce bias in cross-cultural comparisons. To achieve the essential objective of comparability across countries, a decision to discard this item was made. The remaining seven items enable a cross-culturally comparable and unbiased assessment of subjective health complaints for boys and girls between 11 and 15 years although two of them slightly exceeded the a priori set threshold. Yet this deviation still might be attributable to chance.

According to the a priori defined criterions all remaining items meet the important Rasch model assumptions of locally independent item responses. All items displayed reasonable fit statistics. Using the one-dimensional score of the Rasch person parameters would not lead to loose crucial psychometric information. The assumption of ordered thresholds could explain the empirical test data well, though the small distance between thresholds 2 and 3 indicated weaknesses in the response choices: ‘about every week’ is likely too close to its neighbouring answer categories.

The scoring algorithm obtained in the present study revealed a consistent pattern of cross-national differences with historically/cultural similar countries having similar scores. It enables a cross-cultural comparable interval scaled assessment of subjective health complaints in school-aged children, which is unbiased regarding age and gender. Further (qualitative) studies might focus on investigating if the HBSC-SCL is sensitive for gender specific aspects of health complaints. Qualitative analysis of item content could be applied to set up threshold for distinguish between negligible and noticeable subjective health complaints.

The new scoring algorithm is available as an SPSS syntax, however syntaxes for other statistical software are also possible. The scoring could be used for international comparisons using the HBSC-SCL.

Acknowledgements

The World Health Organization–Health Behaviour in School-aged Children Survey is a WHO/EURO collaborative study. The authors would like to thank the international coordinator of the 2001/2002 study Candace Currie, University of Edinburgh, Scotland; and the data bank manager Oddrun Samdal, University of Bergen, Norway; and the HBSC Positive Health Group: Ulrike Ravens-Sieberer, Torbjørn Torsheim, Bogdana Alexandrova, Antony Morgan, Kádi Lepp, Raili Valimäa, Céline Vignes, Cornelia Haehne, Jennifer Nickel, Nadine Helle, Christina Schnohr, Gyöngyi Kökönyei, Franco Cavallo, Inese Gobina, Wilma Vollebergh, Saskia van Dorsseelaer, Jørn Hetland, Joanna Mazur, Tania Gaspar, Viorel Mih, Aurora Szentagotai, Eva Kallay, Helena Jereck, Eva Stergar, Vesna Pucelj, Pilar Ramos, Mia Danielson, Mujgan Alikasifoglu, Ethem Erginoz, Mary Overpeck.

Conflict of interest: None declared.

Key points

- A scoring system for the 'Health Behaviour in school-aged Children' (HBSC) symptom checklist that would facilitate cross-national comparisons was developed.
- Data from 35 European and North American Countries were obtained from the 'WHO collaborative study HBSC 2001/2002'.
- Rasch measurement analysis and investigation of DIF using logistic regression methods showed one out of eight items to display sizeable DIF which thus was discarded.
- Unidimensionality of the items was proved using means of CFA. Rasch model analysis resulted in conform item parameter estimation and acceptable item fit.
- A scoring algorithm could be developed which enables a cross-cultural comparable and interval-scaled assessment of subjective health complaints to be included in further HBSC or other epidemiological studies.

References

Received 31 May 2007, accepted 24 December 2007.