Edge ideals of CIRCULANT GRAPHS

Dr. Emil Skoldberg, Sasha Northrup

Welcome to class!

Project Proposal

This project aims to look at circulant graphs, which can be described as finite simple graphs on which a cyclic group acts transitively on the vertices. Examples of circulant graphs thus include the n-gons, as well as the complete graphs. To every finite graph G on the vertex set $[n]=\{1,2, \ldots, n\}$, one can associate a monomial ideal IG in the polynomial ring $S=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. This ideal is generated by the monomials x_{i} and x_{j}, where $\{i, j\}$ is an edge in G. Such ideals have attracted a lot of attention in commutative algebra for a long time, where researchers have linked algebraic properties of IG to graphtheoretic properties of G. In particular we will study the Betti numbers of IG in the case where G is a circulant graph which is invariant under the dihedral group D_{n}, and investigate the decomposition of its homologies in terms of the irreducible representations of D_{n}. This investigation will make use of the computer package Macaulay2 for computing the homologies of the ideals IG.

Chordal circulant GRAPHS

The first steps

Finite simple graphs on which a cyclic group acts transitively on the vertices.

All cycles of length at least four have a chord, separate from the cycle, connecting two vertices within the cycle.

Input: 1, 2, 3, 4, 5, 6
Input: 1, 2, 3, 4, 5, 6
$\Sigma=\{\{2,3,4,5,6\}\}$ and $i=6$ $v_{i}=1 \rightarrow \sum=\{\{3,5\},\{2,4,6\}\}$ $\Sigma=\{\{3,5\},\{2,4,6\}\}$ and $i=5$ $v_{i}=5 \rightarrow \Sigma=\{\{3\},\{2,4,6\}\}$
$\Sigma=\{\{5\},\{2,4,6\}\}$ and $i=4$ $v_{i}=3 \rightarrow \Sigma=\{\{2,4,6\}\}$
$\Sigma=\{\{2,4,6\}\}$ and $i=3$
$v_{i}=2 \rightarrow \Sigma=\{\{4,6\}\}$
$\Sigma=\{\{4,6\}\}$ and $i=2$
($v_{i}=4 \rightarrow \Sigma=\{\{6\}\}$
$\Sigma=\{\{6\}\}$ and $i=1$
$v_{i}=6 \rightarrow \Sigma=\{\{\phi\}\}$

Output: $6,4,2,3,5,1$
$\Sigma=\{\{1,2,3,4,5,6\}\}$ and $i=7$
$\Sigma=\{\{1,2,3,5,6\}\}$ and $i=6$ $v_{i}=4 \rightarrow \Sigma=\{\{2,6\},\{1,3,5\}\}$
$\Sigma=\{\{2,6\},\{1,3,5\}\}$ and $i=5$ $v_{i}=6 \rightarrow \Sigma=\{\{2\},\{1,3,5\}\}$
$\Sigma=\{\{2\},\{1,3,5\}\}$ and $i=4$ $v_{i}=2 \rightarrow \Sigma=\{\{1,3,5\}\}$
$\Sigma=\{\{1,3,5\}\}$ and $i=3$
$v_{i}=1 \rightarrow \sum=\{\{3,5\}\}$
$\Sigma=\{\{3,5\}\}$ and $i=2$ $v_{i}=3 \rightarrow \Sigma=\{\{5\}\}$
$\Sigma=\{\{5\}\}$ and $i=1$ $v_{i}=5 \rightarrow \Sigma=\{\{\phi\}\}$

PERFECT Elimination Order

An ordering of vertices such that, for each vertex, its neighbors form a complete induced subgraph.

A graph is chordal if and only if it has a perfect elimination order. Equivalently, if it has a linear free resolution.

More on perfect ELIMINATION ORDERS

The algorithm given in Chen (2010) produces the maximum of $k!(m!)^{k}$ perfect elimination orderings, in which m is the number of vertices in eack disjoint connected component of the compliment, and k is the number of disjoint connected components in the compliment.

Algorithm 2.2 from "Minimal free resolutions of linear edge ideals" (Chen, 2010)

Algorithm 2.2. Let H be a chordal graph with vertices x_{1}, \ldots, x_{n}. Let Σ be a set containing a sequence of sets.
Input: $\Sigma=\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}, i=n+1$.
Step 1: Choose and remove a vertex v from the first set in Σ. Set $i:=i-1$ and $v_{i}:=v$. If the first set in Σ is now empty, remove it from Σ. Go to setp 2 .
Step 2: If $\Sigma=\emptyset$, stop. If $\Sigma \neq \emptyset$, suppose $\Sigma=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$. For any $1 \leqslant j \leqslant r$, replace the set S_{j} by two sets T_{j} and T_{j}^{\prime} such that $S_{j}=T_{j} \cup T_{j}^{\prime}, T_{j} \cap T_{j}^{\prime}=\emptyset, v_{i} w \in H$ for any $w \in T_{j}$ and $v_{i} w^{\prime} \notin H$ for any $w^{\prime} \in T_{j}^{\prime}$. Now we set

O3.

$$
\Sigma:=\left\{T_{1}, T_{2}, \ldots, T_{r}, T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{r}^{\prime}\right\} .
$$

[^0]Output: v_{1}, \ldots, v_{n}.

Basis Elements of the Free Resolution

Reverse Perfect Elimination Order + Preneighborhoods

The process so far

O1 Fill in the Betti Table			
```i1 : kk = zz/101 01 = kk 01: QuotientRing i2 : s = kk[x_0, x_1, x_2] \(02=\mathrm{s}\) 02 : PolynomialRing i3 : I = ideal (x_0*x_1,x_1*x_2,x_2*x_0) \(03=\) ideal \(\left(\begin{array}{c}x_{0} \\ 0\end{array}, x_{1} x_{2}, x_{0} x_{2}\right) ~\) 03 : Ideal of S i4 : \(M=S / I\) \(04=M\) 04 : QuotientRing i5 : \(M=S^{\wedge} 1 / I\) 05 = cokernel \| x_0x_1 x_1x_2 x_0x_2	```	```05 : S-module, quotient of \(\mathrm{S}^{1}\) \\ i6 : Mres = M \\ 06 = çokernel \| x_0x_1 x_1x_2 x_0x_2	\\ 06 : S-module, quotient of \(\mathrm{S}^{1}\) \\ i7 : Ires = res I \\ \(07=S^{1}<--S^{3}<--S^{2}<-0\) \\ 07 : ChainComplex \\ i8 : betti Ires \\ \(08=\) total: \(\begin{array}{llll}0 & 1 & 2 \\ 0 & 1 & 2 \\ 0: & 1 & . & .\end{array}\) \\ 0: 1 1: \(3 \dot{3}\) \\ 08 : Bettitally \\ i9 :```


	Construct All Possible "Chen-   Symbols" for a given Perfect		
Elimination Order		$\quad$ O3	Relate Betti Table with "Chen-
:---			
Symbols"			

# Formula for counting basis elements, aka Betti numbers 

For a graph on $n$ vertices such that its compliment is the union of two disjoint complete graphs on $n / 2$ vertices, the $i^{\text {th }}$ Betti number can be computed as follows:
$\sum\binom{n / 2}{m}\binom{n / 2}{k}$, where $m+k=i$ and $m, k \geq i-\frac{n}{2}$.

Next Steps
Write out formal proof for my formula, work out and prove other formulas for graphs with compliments comprised of more than two disjoint components, write a code for computing basis elements.

## Is EVERYTHING CLEAR?


[^0]:    Remove all the empty sets from $\Sigma$. Go back to step 1 .

