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Abstract

An Alternating Sign Matrix (ASM) of order n, is an nxn matrix whose entries
are either +1,0 or -1. The first and last non-zero entries of each row and
column must be +1, and each successive non-zero entry must alternate in
sign.

For instance the 7 ASM’s of order 3 are:



It was first conjectured by Mills, Robbins and Rumsey, and later proven by
Zeilberger [1], that the number of ASM’s of order n was

14070 (3n —2)!
nl(n+ 1)l(n+2)!...(2n — 1)!

1 Introduction

The aim of my internship was to familiarise myself with these ASM’s, and
the various surprising areas they’re found. This developed into studying the
more ‘well-behaved’ Diamond ASM’s. The even-ordered versions of these
diamonds have finite order, when looked at as a subgroup of SL(2,Z3) [2].
Working over the integers modulo 3 makes sense as the elements of an ASM
must be 1 of 3 possible integers. However for convention I will still write —1
instead of 2 as they are congruent to each other modulo 3. The remainder of
the research project was centered around finding these orders, before this I'd
like to explore the origins of ASM’s, to give context for the rest of the paper.

2 Dodgson’s Condensation Method

ASM’s first were studied by Mills et al [3] using their definition of a ‘A-
determinant’. Consider a square 2-by-2 matrix:

(0

Apet = ad + Abe with A € R

Then

In order to extend this idea to matrices larger than 2-by-2, one could use
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Dodgson’s Condensation Method for computing determinants [4]. However
Robbins and Rumsey chose a variant of this method utilising the aforemen-
tioned lambda-determinant [5]. Ultimately this boiled down to an algebraic
recurrence relation:

(firrrficije + Mijrrkfij—1k)
fijk—1

Jigkt1 =

with (i, ) ranging over Z>
It was found that letting A\ = 1 always obtained Laurent polynomials, and
that the coefficients of these polynomials actually encoded ASM’s [6].

3 Diamond ASM’s

A Diamond ASM of order n, which I will denote D,,, is the ASM of that
order that contains the largest number of non-zero entries. ASM’s of even
order contain two diamonds, while those of odd order only have one. The
diamond ASM’s of order 3,4 and 5 can be seen below.

0 0 1 0
0 1 0 0 0 0 1 0

0 1 0 0 1 -1 1 0
1 -1 1 O 0 1 —-11

1 -1 1 1 -1 1 —-11
0 1 —-11 1 -1 1 0

0 1 0 00 1 0 01 0 0 01 -1 1 0

0 0 1 0 O

Note how both D,’s are just reflections of the other about the vertical axis.
The reason the diamond ASM’s are studied in particular is due to the even-
ordered diamond ASM’s having full rank. In fact they’re determinant is
always 1 [7].

To see this consider a diamond ASM of even order n, now apply the following
row operations:

1. Consider rows 1 through 7 of the matrix. Reflect this half of the matrix
about the horizontal axis. One can do this by first swapping rows 1
and %, then rows 2 and § —1, and so on (Recalling that n must be even
here as we are only considering diamond ASM’s of even order). The
sign of the determinant is changed each time two rows are swapped, so
the determinant is changed |7 | times. This also leaves the upper half
of the matrix in upper-triangular form.



2. Subtract row 2 from row 7 +1, row 3 from row 7 + 2, up until reaching
row n (This will take § — 1 operations).

3. Swap rows 5 + 1 and n — 1, rows 5 + 2 and n — 2, until all these outer
pairs are swapped, excluding row n. This will once again change the
sign of the determinant [n—1/4] times, leaving all but the bottom row
of the matrix in upper-triangular form.

4. Finally adding row 5 + 1 to row n, row § + 2 to row n, until after
adding row n — 1 to row n, the matrix will be in upper-triangular form.
I will denote it U,,.

Then it’s determinant is computed as follows: (The fourth row of the
below matrix is the §th row of the matrix in question.)

1 -r 1 ... 1 ... -1 1 O
o 1 -1 ... -1 ... 1 0 O
o o0 1 .... 1 ... 0 0 O
(_1)(L%J)+(L%J)
0 0 0 1 0 0 0
0 0 0 0 -1 1 0
0 0 0 0 0 -1 1
0 0 0 0 0 0 1

This means the determinant can only be 1 or —1, as —1 raised to any integer
power will always be 1 or —1 and because the product of the diagonals of
the above matrix can only be one of the two as well.

More specifically, the left term becomes

(3] 2

(— )LD+ = J
—1 if [2] + 2] is odd

While the right becomes

U] = 1 ?f%— 1 %s even
-1 1f§—1lsodd

If 2 —11is even, then [%2] =2 — %, while [21] =2 — 2. So [ 2] + |22

% — 1, which is even by assertion. This means if § — 1 is even, then |4,
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Now if 2 — 1 is odd, then |2| =2 and [271] =22 — 3. So [2] + |2 ] =
% — 1, which is odd by assertion. So finally if § — 1 is odd, then |A,| = 1,
and so the determinant of an even-ordered diamond ASM must be equal to
1.

4 Group Theory

Since these even-ordered diamond ASM’s have non-zero determinant, they
are invertible, and so generates a group under multiplication modulo 3. This
is a subgroup of SL(n,Zs3).

Since SL(n,Z3) is a finite group, so too is (D,,) by Lagrange’s Theorem [8].
The remainder of the paper will be about finding the orders of the groups
generated by these D, ’s, or |(D,)|.

Figure 1: ‘Cayley Table for the group (Dy)

%E

To begin answering this question, I sought experimental answers in MAT-
LAB. I wrote a program that would generate D,, for a given order n.

ot



//Two inputs, n is an integer and varargin is either 1,2 or 3
function m=Diamonds(n, varargin)
h=n/2;
c=ceil (n/2);
f=floor (n/2);
A=zeros(n);
C=omnes (1,n);
//Creates alternating 1’s and —1’s.
C(2:2:end)=—1;
//Checks if Diamond is even-—ordered.
if mod(n,2)==0
//Creates ASM, it does the top and the bottom rows at the same time
for i=1:h
ind=(2%i)1;
A(i,:)=[zeros(1,h—1),C(1:ind),zeros(1,h)];
A(n+l-i,:)=[zeros(1,h),C(1:ind),zeros(1,h—1)];

h=h—1;

end

if isequal(varargin , {2})
A=flip (A,2);

elseif isequal(varargin , {3})
A={A flip (A,2) };

end
//For odd—ordered diamond ASM’s
else

for i=1:c

ind=(2%1)—1;
A(i,:)=[zeros(1,f),C(1l:ind),zeros(1,f)];
A(n+1-i,:)=[zeros(1,f),C(1l:ind),zeros(1,f)];
f=f—1;
end
end
A ;
end

Here the function takes optional input arguments to be used if the order of
the diamond ASM is even. It is either 1,2 or 3. 1 is the default and gives
the leftward slanting diamond, 2 gives the rightward slanting diamond, and



3 gives them both.

I then wrote a program that takes in a Diamond ASM, and computes [(D,,)|
using brute force. It takes a second tolerance argument, which is the maxi-
mum number of iterations allowed in the for loop.

function m=Order (A, tol)
s=size (A);
k=s (1);
n=2;
B=A;
while n<tol
B=BxA;
B=mod (B, 3);
B(B==2)=-1;
if isequal (B,eye(k))
Y%fprintf( Matriz has order %d’,n+2)
m=n ;
n=tol+1;
elseif n=tol -1
m=NalN;
n=n+1;
else
n=n-+1;
end
end
end

The results from this were limited, it was a shame that I could only work
over the even numbers.

Despite only having half-rank, and determinant zero, knowing more about the
odd-ordered diamond ASM’s would still be informative. Since I'm working
over a finite field, Z3, raising odd-ordered diamond ASM’s to incrementally
increasing powers, would eventually form repeating periods.

If a diamond ASM of even order D,,, has order k, then Dﬁfﬂ) = D, mod 3.
Moreover, we know for an odd-ordered diamond ASM, say B,,,_1, there exists
a p such that BY, | = By, 1. For the remainder of the paper I will let the
order of By,_1 =p— 1.



6 Results

This table contains orders of diamond ASM’s of order 2 through 100, using
my above definition for orders of odd-ordered diamond ASM’s.

| 1-20 | Order | 21-40 | Order [41-60 | Order |61-80 | Order [81-100 | Order |

1 N/A 21 78 41 80 61 242 81 81

2 2 22 122 42 78 62 | unknown 82 82

3 3 23 177146 43 | unknown | 63 234 83 unknown
4 8 24 60 44 59048 64 | unknown 84 168

5 8 25 59048 45 72 65 unknown 85 unknown
6 6 26 28 46 177148 66 366 86 unknown
7 26 27 27 47 | unknown 67 177146 87 14348904
8 20 28 56 48 492 68 unknown 88 unknown
9 9 29 | 4782968 | 49 | unknown | 69 131438 89 unknown
10 10 30 30 50 59050 70 | unknown 90 90

11 121 31 1103762 | 51 4920 71 unknown 91 728
12 24 32 13124 52 728 72 180 92 unknown
13 26 33 363 53 | unknown | 73 728 93 3581286
14 26 34 6562 54 54 74 19682 94 unknown
15 24 35 265720 55 unknown 75 177144 95 unknown
16 164 36 72 56 1460 76 39368 96 unknown
17 164 37 19682 57 29523 77 | unknown 97 unknown
18 18 38 19682 58 unknown 78 84 98 unknown
19 9841 39 78 59 | unknown | 79 | unknown 99 1089
20 80 40 &0 60 240 &0 164 100 unknown

The unknowns arise as a result of computing the order taking too long. This
makes sense as these computations get more expensive the larger the order
of the ASM, which would account for the unknowns being more frequent the
larger the order of the ASM becomes.

6.1 Initial Analysis

There are a number of trends I noticed all pertaining to the number of ele-
ments in the field, 3.



1. The order of any power of 3 is its order, n.

2. If|(D,)| = k, then As, = 3k.

3. After examining the prime-ordered ASM’s, I noticed all of them divided

6.2 Powers of 3

3¢ — 1 evenly, for various d € Z

Upon further examining these powers of 3, [ noticed that one could write most
of the orders I found as (3¢ + a), where d € Z, and a € 1,0,—1. However
the rest of them required an extra multiplicative constant ¢, with % €7, to
fit the pattern. For simplicity, I will write O; for [(D,,)].
For example:

1-10 Order 11-20 Order 21-30 Order 31-40 Order
1 30 1 |53 -1 21 3% Oy 41 31 —1
2 3 —1 12 3% Oy 22 | 5(3°+1)] 32 | 2(3%+1)
3 31 14 33 —1 23 3 —1 33 3% Opy
4 123 +1)| 14 33 —1 24 3% Og 34 3F+1
5 32 —1 15 3% Os 25 310 -1 35 | .5(32—1)
6 3% O, 16 [ 23*+1) ] 26 3 +1 36 3% O1g
7 3 -1 17 [ 23*+1) [ 27 [.5(3°+1)| 37 39 —1
8 [2(3*+1)| 18 3 * Og 28 | 2(3*+1) | 38 39 —1
9 32 19 | .53°-1)] 29 3t —1 39 3% Os3
10 | 32+1 20 31 -1 30 3% Oy 40 3t -1

I find these patterns very intriguing, and they lead me to believe that the
answer to my question may lie somewhere in combinatorics, one of the areas
in mathematics where ASM’s have garnered most fame. I think this because
each entry can only be 1 of 3 numbers. So without alternating sign or row
sum constraints, the number of unique rows of length n modulo 3, would be

3m.

7 Analysis

My next step was to look ‘under the hood’ a little bit, and see what kinds
of matrices arise when a diamond ASM is raised to any non-negative integer




power modulo 3. These are figures 2-41l. For the sake of clarity I have once

again used the colour-mapping from the Cayley Tabell!).

Figure 2: The very left and very right most matrix is the original diamond
ASM of order 3, A;. The middle two are then A% and A3 mod 3

Figure 3: This is the same again but for 4. Notice how A} and A§ are the
horizontally reflected identity and identity matrix of order 4

Figure 4: This is the same again but for A;. Notice how its pattern is more
like it’s odd-ordered counter part As

7.1 Rows and Columns

Usually with ASM’s, the row and column sums must each be 1, due to the
alternating sign condition. However for these powers of diamond ASM’s, the
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D!’s, seem to have rows and columns whose entries must be congruent to 1
modulo 3.

Moreover, many of the symmetries of the diamond ASM’s are also shared
by these intermediate matrices. For powers of odd-ordered diamond ASM’s,
they are both symmetric over the vertical. horizontal and both diagonal axes.
For the powers of even-ordered diamond ASM’s then, they are only symmet-
ric over the two diagonal axes. This gives two constraints for these powers
of diamond ASM’s. For one, each column and row must have their entries
sum to 1 modulo 3. For two, the matrices must be symmetric over the two
diagonal axes, and powers of odd-ordered diamond ASM’s must also be sym-
metric over the vertical and horizontal axes.

Another trait possessed by the powers of even-ordered diamond ASM’s, is
half of the unique powers are horizontally reflected of the other half. For
example in the n=4 case, the first bottom four matrices in Figure 2, are the
top ones horizontally reflected.

I decided to examine these rows and columns. My plan is to find a link
between the orders, and the number of unique rows and columns seen in the
intermediate matrices. For instance, in the n=3 case, only three unique rows
and columns are used. Namely: 010,1-11 and 10-1. The n=4 case uses 8
unique rows and columns, however for each row, that row read in reverse is
also another unique row. These unique rows and columns are: 0100,0010,1-
110,01-11,-1011,110-1,1000, and 0001.

The n=>5,6 and 7 cases can be seen in figure 5.

For the n=3,4,5 and 7 cases, the number of these unique rows and columns is
exactly O,,. The exception is 6, a power of 3 that is greater than 3. It has 18
unique rows and columns, which is 3*6. Many rows in the n = 5 case have
analogues in the n = 7 case. The same is also true for the n =4 and n = 6
cases. | believe computing the number of these unique rows present in (D,,)
would lead to being able to compute O,,

8 Conclusions and Continuations

Unfortunately I was not able to research much more into these matrices
and their fascinating properties. I do fully plan on continuing this research
however. My main goal is to create a formula for each O,,, and prove it. I'd
also like to explain some more of these phenomena, such as the link between
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O,, and the number of unique rows of each (D,,).

Figure 5: Unique rows and columns for n=>5,6 and 7 cases.
Here I've put the n=6 case on the right, as to make it easier to compare
some of the similarities in the rows of the n=5 and 7 cases.

n="7 n="7 continued
0110110 1-1-11-1-11
Tz 01-11-110 -11-10-11-1 n=>06 n=>6 (reflected)
00100 0001000 -1-10-10-1-1 100000 000001
01110 001-1100 -110101-1 010000 000010
111 1-11-11-11 -1-1101-1-1 001000 000100
1000-1 -100000-1 0-1-1-1-1-10 01-1100 001-110
11011 1100011 -1-1-11-1-1-1 1-11-110 01-11-11
10101 100-1001 1010101 -100011 11000-1
TIILT -101110-1 0-1111-10 10-1-10-1 -10-1-101
0-10-10 00-10-100 1-1-10-1-11 -101-10-1 -10-110-1
10-11-101 010-1010 1110-1-1 -1-10111
-10-1-1-10-1 1-1010-11
-111-11-1 11-1-1-111
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