
Does tumour purity have an effect on the ability to detect allele-specific expression (ASE)? 
 
Introduction 
Allele-specific expression (ASE) refers to the differential or unequal expression of gene 
copies. While differences in gene expression between alleles have previously been 
investigated in the context of epigenetics and imprinting, this form of allelic expression 
imbalance occurs due to cis-acting, heritable genetic variation among autosomal genes1. 
 
ASE has also been shown to play a role in cancer development and is frequently observed in 
tumour samples. Somatic mutations in the cis-regulatory elements which regulate ASE 
genes may be driver mutations which contribute to cancer2. A loss-of-function mutation in a 
recessive tumour suppressor gene can lead to cancer when the more highly expressed allele 
is affected3,4. In addition, ASE can also cause the overexpression of genes with oncogenic 
mutations, which can disrupt homeostasis and promote the initiation of cancer5. 
 
This project aims to investigate whether the tumour purity, or percentage of cancer cells 
present in the tumour tissue, has an effect on estimating ASE. Through analysing sequencing 
data from pancreatic tissue samples using R statistical software, we investigated whether 
adjusting count values to account for tumour purity affected our ability to detect ASE. The 
data used for analysis had previously been run through cisASE, a likelihood-based method 
used to identify cis-regulated ASE from sequencing data (Liu et al., 2016). Generally, cisASE 
has been used with matched DNA-RNA sequencing data, however it is considered applicable 
for datasets without DNA-seq, and thus another aim of our project was to investigate 
whether ASE could be detected in genes using only RNA-seq data. 
 
Limitations and assumptions 
There are a number of caveats which we employed and limitations which we recognise to 
our project. Firstly, we are assuming that the normal sample only contains the reference 
allele, and that the alternate allele is only found in the tumour sample. We also assumed 
that if a gene was not included in the GTEx data of genes normally expressed in pancreatic 
tissue, it was also not expressed in the non-tumour tissue of our samples.  
 
In addition, for our initial investigation, we assumed that there was no alignment bias in 
favour of the reference over the alternative allele which could be contributing to differences 
rather than tumour purity. When the alternative count was found to be higher than the 
reference count, we assumed that these were true candidate genes showing ASE because 
even with alignment bias in favour of the reference allele and contamination of the normal 
sample the reference count was higher.  
 
 
Materials and methods 
The pancreatic tissue samples used for analysis in this project came from the cancer 
genome atlas (TCGA) dataset7. The software tool cisASE was used to identify candidate ASE 
genes from matched DNA-RNA as well as RNA sequencing only data6. The R statistical 
software (version 2022.02.1) was used for data analysis.  
 



The output from cisASE was initially analysed to compare between the matched DNA-RNA 
results and the RNA-only results. For the gene-level cisASE results we applied the 
recommended log-likelihood ratio (LLR) (>0.82) and heterogeneity p-value (>0.05), to 
remove splicing errors, thresholds to identify candidate ASE genes. Genes that showed copy 
number variation (CNV) were also removed to control for bias.   
 
We used median TPM gene expression data for normal pancreatic tissue from GTEx9 to 
identify which genes are usually and not usually expressed in this tissue type. A number of 
reference databases were used to investigate gene functions and expression – GeneCards8, 
GTEx9, NCBI gene database10, and COSMIC11. 
 
Single nucleotide variants (SNVs) cisASE results were used to identify candidate ASE SNVs 
using both the default LLR threshold (0.82) as well as the sample specific LLR cut-offs (Table 
1) determined through 2000 rounds of simulations. 
 

Sample Analysis LLR Threshold (0.05 significance level) 

111 RNA only - Gene 0.70 

111 Matched RNA\DNA - Gene 0.72 

111 Matched RNA\DNA - SNV 0.84 

111 RNA only - SNV 0.93 

131 RNA only - Gene 0.88 

131 Matched RNA\DNA - Gene 0.82 

131 Matched RNA\DNA - SNV 0.87 

131 RNA only - SNV 0.91 

161 RNA only - Gene 0.89 

161 Matched RNA\DNA - Gene 0.83 

161 Matched RNA\DNA - SNV 0.89 

161 RNA only - SNV 0.90 

 
 
We adjusted the RNA count values based on tumour purity in order to see whether this had 
an effect on the candidate ASE genes identified through our analysis. Sample 111 had a 
purity level of 39%, Sample 131 had a purity of 72%, and Sample 161 had a purity of 19%. 
The adjusted RNA reference count value was obtained through a series of calculations 
incorporating tumour purity. First, the normal sample fraction was found (1 – tumour 
purity). The total counts were also calculated by summing the Ref and Alt counts. Then, the 
total number of reads in the sample attributed to the normal sample was found by 
multiplying the normal sample fraction by the total count value. Finally, the adjusted Ref 
count value was calculated by subtracting the total reads attributed to the normal sample 
from the Ref count. This final value corresponded to the total number of reference reads 
attribute to the tumour sample.  
 
The negative adjusted reference counts were assumed to be candidate ASE genes and were 
separated from positive adjusted count values. A binomial test was performed using the 
positive subset of adjusted reference count to find candidate ASEs in this group. The p-value 
was also adjusted using the false discovery method (FDR) for multiple test correction. 
 

Table 1: New LLR thresholds applied to the data specific to sample and analysis type 



Results 
 
Candidate ASE genes: 
Table 2 shows a comparison of the number of genes per sample before and after filtering 
for significant LLR and p-value thresholds, as well as removal of genes showing CNV, 
resulting in a significant decrease in the number of candidate ASE genes. One of our 
samples, sample 111, is hypermutated and therefore has a larger number of SNVs compared 
to the other two samples (Table 2). This resulted in a larger number of genes assessed for 
ASE for this sample. The number of ASE candidate genes were similar when we compared 
the results from the matched DNA-RNA to the RNA-only candidates. 
 

 Sample 111 Sample 131 Sample 161 

 Matched RNA only Matched RNA 
only 

Matched RNA only 

Before 
filtering 

7841 7835 551 551 404 404 

LLR > 0.82 4123 4269 262 328 185 164 

p-value 
>=0.05 

1047 1036 7 15 4 4 
 

CNV = 0 987 989 7 11 4 4 

 
 
 
 
Identification of genes that are not usually expressed in the pancreas: 
We identified 5 candidate ASE genes (Table 3) not usually expressed in pancreatic tissues, 
using both the gene-level and SNV-Level cisASE results. These were Transmembrane Serine 
Protease 15 (TMPRSS15), H2B Clustered Histone 12-like (H2BC12L), Long Intergenic Non-
Protein Coding RNA 1618 (LINC01618), Acetylserotonin O-methyltransferase-like (ASTML), 
and A-Kinase Anchoring Protein 17A (AKAP17A). After further analysis using the reference 
databases GeneCards8, GTEx9, NCBI gene database10, and COSMIC11, 2 of the 5 genes were 
found to have a potential association with colorectal and/or pancreatic cancer12,13. 
However, there are also other biological and technical factors which could indicate genes 
not usually expressed in the pancreas, such as blood contamination. 
 

Gene ID Analysis type Gene name  Function 

ENSG00000154646 
 

Matched, 
RNA only 

TMPRSS15 - 
transmembrane 
serine protease 
15 

 Enzyme which activates 
pancreatic proteolytic 
proenzymes. 

 Function is in pancreas, 
but expression restricted 
towards duodenum. 

ENSG00000234289 
 

Matched, 
RNA only 

H2BC12L – H2B 
clustered histone 
12 like 

 Enables DNA binding 

ENSG00000250302    
 

Matched LINC01618 – Long 
intergenic non-

 Previously associated 
with colorectal cancer12 

Table 2: Comparison of candidate ASE genes per sample for matched and RNA only 
sequencing data. 



protein coding 
RNA 1618 

ENSG00000169093 
 

Matched, 
RNA only, 
SNV 

ASTML – 
Acetylserotonin 
O-
methyltransferase 
like 

 Pyrophosphatase 

 Methyltransferase  

 Previously associated 
with 
colorectal/pancreatic 
cancers13 

ENSG00000197976 
 

RNA only, 
SNV 

AKAP17A – A-
kinase anchoring 
protein 17A 

 Part of spliceosome 
complex  

 
 
 
 
Re-analysis using specific LLR thresholds: 
When we re-analysed this data using LLR thresholds specific to each sample and analysis 
type, we found no difference in the number of candidate ASE genes identified (Table 4) 
indicating that the default LLR threshold is sufficient to call candidate ASE genes. We also 
confirmed that the genes identified using both thresholds were the same.  
 

 Number of unique candidate ASE genes 

 LLR > 0.82 Specific LLR threshold 

Matched gene 10 10 

RNA only gene 9 9 

Matched SNV 12 12 

RNA only SNV 10 10 

 
 
 
 
Comparison of methods used to identify ASE SNVs 
The Venn diagrams in Figure 1 below illustrate the findings of comparisons between 
different methods of identifying candidate ASE SNVs. Candidate ASEs were identified using 
the cisASE results with the LLR threshold of > 0.82 applied, as well as by running a binomial 
test on reference counts which were both adjusted and unadjusted to account for tumour 
purity to investigate whether this affected results.  

Table 3: Candidate ASE genes and SNVs which are also not usually expressed in 
pancreatic tissue 

Table 4: Comparison of unique candidate ASE genes found for each analysis type with 
the old and new LLR thresholds applied 



 
 
Discussion 
 
Findings on using cisASE: 
The potential of software such as cisASE for applications in detecting genes which show 
allele-specific expression is huge, particularly in developing our understanding of the 
mechanisms of cancer initiation and progression. This project explored the process of 
identifying candidate ASE genes from cisASE data by applying different significance 
thresholds and investigated the difference in candidate calls when using matched DNA-RNA 
data compared to RNA-only data.   
 
The similar results obtained using RNA-only data and those using matched DNA-RNA data 
(Table 2) indicate that cisASE can detect ASE in genes from using only RNA-seq data. 
Considering the current costs and storage constraints involved with sequencing large 
amounts of data, it is hugely advantageous that these tests to identify genes showing ASE 



can be performed using only RNA-seq data, without the need for a matched DNA-seq 
sample too.  
 
We found that identifying candidate ASE genes using a standard LLR cut-off of 0.82 yielded 
the same results as the alternative method of applying individual specific LLR cut-offs 
depending on the sample and analysis type. This finding indicates that the default LLR 
threshold of > 0.82 is sufficient to identify candidate ASE genes from the data, without the 
need to parse out the sample-specific thresholds from the cisASE result files. 
 
Impact of adjusting SNV based on tumour purity: 
A comparison of methods to identify genes showing ASE (Figure 1), namely candidates 
found using an LLR threshold applied to cisASE results and those identified using binomial 
tests with both adjusted and unadjusted reference counts yielded several important 
observations. Firstly, it is clear that neither binomial method is picking up all of the 
candidates found using cisASE, and there are additional candidates detected by the binomial 
tests which cisASE doesn’t call. This may be explained by cisASE using models to account for 
alignment bias6, while the binomial test is a much simpler model which has not accounted 
for this bias. It is also significant that the total number of candidates identified by a binomial 
test that were not called by cisASE, or possible false positives, were much lower for the 
results with adjusted ref counts (1948) when compared with the unadjusted test (5685). 
This perhaps implies that our adjustments for tumour purity have improved the ability to 
detect true candidate ASE genes with a binomial test. 
 
There are a number of possibilities which could explain the subsets of genes called by cisASE 
and unadjusted or adjusted binomial test only. There was a larger overlap between those 
called by cisASE and unadjusted test only (1444) than by cisASE and adjusted only (1075), 
and it could be the case that the former candidates are in fact false positives if cisASE does 
not specifically account for tumour purity. The binomial test adjusting for purity may be 
detecting less false cisASE candidates, in which case, accounting for this when identifying 
ASE does have an effect on results. Alternatively, the subset of candidates called by cisASE 
and adjusted binomial test could be showing that the cisASE model itself does 
unintentionally account for differences in tumour purity to some extent. However, this 
could also be explained if adjusting the reference count based on tumour purity has, by 
chance, captured the cisASE adjustment for alignment bias for some of the SNVs.   
 
Future work 
In conclusion, our analysis has found several results and possibilities which require further 
investigation to provide more conclusive answers. Additional research is required to 
account for confounding variables which could affect our results. Accounting for alignment 
bias in this sequencing data in particular is vital to see whether this has an effect and 
subsequently apply new methods to adjust for it if it does. This could be performed by 
considering genome mappability, or the ability of sequence reads to uniquely map to 
individual regions of the genome14.  
 
Running these tests and adjustments on larger TCGA datasets with more samples would also 
provide important insights into the accuracy of these findings. Currently, we cannot rule out 
that the candidates detected by our adjusted binomial method are either true or false ASE 



SNVs. It would be useful to repeat the same method on simulated data, or on data that has 
previously been experimentally validated, to investigate the accuracy of the model. Our 
findings suggest that tumour purity may have an effect on the ability to detect ASE, 
however additional work and refinement of our model is necessary to confirm this. 
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