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Abstract

Bäcklund transformations are a useful method to solve for soliton solutions. In this paper,
Bäcklund transformations are analysed and used to solve the one and two-soliton solutions for
the sine-Gordon equation and the Korteweg-De Vries equation.

1 Introduction

Bäcklund transformations (BTs) were developed in the 1880s by L.Bianchi and A.V.Bäcklund and
were originally used in the subject of differential geometry. BTs transform a nonlinear partial dif-
ferential equation (PDE) into another PDE. They relate PDEs and their solutions and they are
used to generate solutions to nonlinear PDEs. They typically consist of a system of two first order
PDEs relating two functions. If the two functions satisfy the PDE separately, then the two func-
tions is a BT. If both functions satisfy the same PDE then it is an auto-Bäcklund transformation [1].

In this paper, soliton solutions to the sine-Gordon (SG) equation and to the Korteweg-De-Vries
(KdV) equation are analysed. Solitons were first observed by John Scott Russell in 1834. He de-
scribed that he was watching a boat on the Edinburgh-Glasgow canal when it suddenly came to a
stop. The water which had been put in motion accumulated around the boat and rolled forward
rapidly. The wave had a rounded, smooth shape and it continued moving forward without changing
form or slowing down. Scott Russell described this phenomenon as the “Wave of Translation”.

Solitons are described as waves with just a single crest that maintain their shape while they prop-
agate at a constant velocity. Scott Russell found that their speed depend on the size of the wave and
their width compared to the depth of the water. Solitons never merge but instead a small wave can
be overtaken by another bigger one which results in a phase shift. If a wave is too big for the depth
of the water it splits into two, one larger than the other. Another interesting aspect of solitons is the
way in which they are moving. Travelling solitons are either kink or antikink depending on whether
they are propagating clockwise or anticlockwise respectively. Collisions between kink-kink solitons
behave differently than between kink-antikink solitons. This fact is demonstrated in section 2.2.2
for the two-soliton solution to the SG equation [2].
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2 Sine-Gordon Equation

Some of the earliest BTs were for the sine-Gordon (SG) equation which is the classical wave equation
with a nonlinear sine source term and takes the form:

uxt = sin (u) (1)

At first, this equation was considered in differential geometry to describe pseudospherical surfaces.
The SG equation is known to be a model for various wave phenomena including the propagation of
dislocations in crystals, waves along lipid membranes and torsion waves in strings and pendulums [3].
The interesting aspect of the solutions of this equation comes from the fact that they exhibit particle
like solutions.

2.1 Bäcklund transformation of the sine-Gordon equation

The two equations:
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form the Bäcklund transformation for the sine-Gordon eq. (1) [4]. This is seen by forming the
cross-derivatives of each equation:
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By adding and subtracting these equations respectively, we can conclude that:

uxt = sin(u) and vxt = sin(v) (4)

Clearly, both u and v satisfy the SG equation. Therefore, using the definition of an auto-Bäcklund
transformation which was explained previously, the pair of equations eq. (2) are an auto-Bäcklund
transformation for the SG equation.

2.2 Constructing the one and two-soliton solution to the SG equation

2.2.1 One-soliton solution

By analysing eq. (4), it can be seen that they both have the zero solution, namely u(x, t) = 0 and
v(x, t) = 0 respectively for all x and t. By choosing one of these variables equal to zero, say v = 0,
the one-soliton solution can be found [5]. Thus, eq. (2) becomes:
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To solve for u, these equations are integrated:
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After integration, the equations become:
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where f and g are arbitrary functions of integration.
By subtracting and rearranging eq. (7), the following solution can be constructed:

f(t)− ax = g(x)− t

a
(8)

It then follows that:

f(t) = K − t

a
g(x) = K − ax (9)

where K is an arbitrary constant.
Hence, eq. (7) can now be written as the single equation:

log
∣∣∣tan(u

4

)∣∣∣+K − t

a
= ax (10)

Rearranging to solve for u results in the equation:

u(x, t) = 4 arctan

[
C exp

(
ax+

t

a

)]
(11)

where C = exp(−K).
Eq. (11) is the single-soliton solution. Since a soliton is a wave it can be written in the same

form as a wave function, namely:

u(x, t) = 4 arctan

[
exp

(
x− vt+ x0√

1− v2

)]
(12)

where 0 < v < 1 controls the speed of the wave and x0 sets the initial position of the wave.

To be more precise, eq. (12) is the kink one-soliton solution to the SG equation. To find the
antikink one-soliton solution, the exponential is raised to the negative power. The two animations
below show both a kink and antikink single-soliton solution to the SG equation. The graphs were
made in the mathematical software Maple.

(a) Kink soliton (b) Antikink soliton

Figure 1: Short animations showing the one-soliton solutions to the SG equation
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As it was explained earlier, kink solitons propagate clockwise while antikink solitons propagate
anticlockwise. This can be seen in the graphs above as the graphs are “opposites” of each other.

2.2.2 Two-soliton solution

The two-soliton solution to the SG equation can be calculated using the one-soliton solution and
a nonlinear superposition. This is possible due to Bianchi’s Permutability Theorem (BPT) which
provides a way to obtain new solutions. It states that given three distinct solutions to a PDE, a
fourth solution can be found algebraically using a suitable auto-Bäcklund transformation.

Say u0 is a solution of a PDE with an auto-Bäcklund transformation. One can apply the BT
to u0 with parameter a1 to obtain the solution u1. Then, one can take the BT from u1 with param-
eter a2 to get the solution u12. Similarly, one can take the BT from u0 with parameter a2 to get u2

and then take another BT from u2 with parameter u1 to obtain the solution u21.
BPT shows that the solutions u12 and u21 are the same. This fact can be used to obtain another

solution for the PDE, and in this case, the SG equation. The diagram below helps to illustrate BPT.

u0

u1

u2

u12=u21

a1 a2

a2 a1

Figure 2: Diagram illustrating BPT

The two-soliton solution can now be calculated using the one-soliton solution and our knowledge
from BPT. Firstly, two solutions u1 and u2 are generated from the solution u0 with two different
parameters, in this case a1 and a2 respectively [5]:
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Then, two more solutions are constructed, u12 by taking the BT from u1 with parameter a2 and u21

by taking the BT from u2 with parameter a1:
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Now BPT tells us that u12 = u21. Using this fact, the two-soliton solution to the SG can be obtained.
This is done by subtracting the difference of eqs. (13) from the difference of eqs. (14) to get:
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This simplifies into:
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To find the two-soliton solution, u12 has to be solved for. The easiest way to do this is to first use
the trigonometric identity: sinA+ sinB = 2 sin

(
A+B

2

)
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(
A−B

2

)
The equation thus becomes:

− a1

[
sin

(
u12 − u2 + u1 − u0

4

)
cos

(
u12 − u2 − u1 + u0

4

)]
+

a2

[
sin

(
u12 − u1 + u2 − u0

4

)
cos

(
u12 − u1 − u2 + u0

4

)]
= 0 (17)

By removing the common cosine factor, the equation is simplified to:
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Next, the trigonometric identity sin(A+B) = sinA cosB + cosA sinB is applied:
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By grouping like terms and using the fact that cos(−A) = cosA and sin(−A) = − sinA, the equation
can be simplified to:
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Since, tanA = sinA
cosA , dividing the equation by cos

(
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4

)
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(
u1−u2

4

)
results in:
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4
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4

)
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Finally, from this expression, u12 can be recovered:

u12 = u0 − 4 arctan

[(
a1 + a2
a1 − a2

)
tan

(
u1 − u2

4

)]
(22)

Eq. (22) can be used to find a fourth solution to the SG equation given that three solutions are
already known. By letting u = 0 and by letting u1 and u2 be non-zero one-soliton solutions, the
two-soliton solution can be found algebraically. The two animations below show the kink-kink and
antikink-kink solutions respectively.
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(a) Kink-kink soliton (b) Antikink-kink soliton

Figure 3: Short animations showing the two-soliton solutions to the SG equation using BPT

In both collisions the waves pass through each other. The wave which starts furthest to the right
is faster than the other wave. It catches up to the slower wave until they collide at t = 0. As these
waves are solitons, the faster wave passes through the other wave instead of merging together. The
waves maintain their velocity and shape after the collision and only observe a phase shift. Therefore,
these collisions are elastic.

Another two-soliton solution called breathers can also arise. Breathers are nonlinear waves where
energy is concentrated in a localized area. Breathers experience oscillatory behaviour [6]. Below is
an animation of a standing breather which is a coupled kink-antikink soliton.

Figure 4: Animation showing a standing breather solution to the SG equation
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Small amplitude breathers can also arise. The animations below shows this type of breather.
This wave has a breather envelope which is also included.

Figure 5: Animation showing a small amplitude breather and its envelope

3 Korteweg-De-Vries equation

The Korteweg-De-Vries (KdV) equation is a model for waves on shallow water surfaces and is defined
as:

ut − 6uux + uxxx = 0 (23)

This equation has many applications including long internal waves in a density-stratified ocean, ion
acoustic waves in plasma and acoustic waves on a crystal lattice [7].

3.1 Constructing the one and two-soliton solution to the KdV equation

3.1.1 One-soliton solution

Constructing the one-soliton solution for the KdV equation is slightly more complicated than for the
SG equation. Firstly, the Miura transformation has to be used which is the transformation between
the KdV equation and the modified KdV equation and is defined as [4]:

u = v2 + vx (24)

Secondly, since the KdV equation is Galilean invariant (that is, the laws of motion are the same
in all inertial frames), it is easier to work with u − λ rather than just u. Therefore, the Miura
transformation becomes:

u = λ+ v2 + vx (25)
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where u = u(x, t), v = v(x, t) and λ is a real parameter. Hence, the modified KdV equation becomes:

vt − 6(v2 + λ)vx + vxxx = 0 (26)

From eq. (26), if v is a solution then −v is also a solution since the equation is odd in v. Two
functions can then be introduced:

u1 = λ+ v2 + vx u2 = λ+ v2 − vx (27)

where v and λ are given. By using simple algebra it is clear that eq. (27) can be written as:

u1 − u2 = 2vx u1 + u2 = 2(λ+ v2) (28)

For convenience purposes, another transformation is introduced:

ui =
∂wi

∂x
(29)

where w = w(x, t) and i = 1, 2 By using eq. (29) and following a couple calculations eq. (28), can
be written as:

w1 − w2 = 2v (w1 + w2)x = 2λ+
1

2
(w1 − w2)

2 (30)

The second part of eq. (30) is the x part of the BT. The t part of the BT can be found by rewriting
eq. (26) using the previous equations, namely, eq. (28), eq. (29) and the first part of eq. (30):

(w1 + w2)t − 3(w2
1x − w2

2x) + (w1 − w2)xxx = 0 (31)

The BT of the KdV is made up of equations eq. (30) and eq. (31) which actually make up an
auto-Bäcklund transformation. These equations along with eq. (29) are used to find solutions to the
KdV.

Similar to the SG equation, the one-soliton solution for the KdV is found by letting w2 = 0 for
all x and t. By following the same method as before, the BT yields:

w1 = −2k tanh(k(x− x0 − 4k2t)) (32)

for |w1| < 2k where λ = −k2. This is the one-soliton solution for the modified KdV equation. Hence,
using eq. (29), the one-soliton solution of the actual KdV equation can be found for this particular
condition:

u1 = −2k2 sech2(k(x− x0 − 4k2t)) (33)

However, for |w1| > 2k, the Bäcklund transformation yields:

w1 = −2k coth(k(x− x0 − 4k2t)) (34)

and so the single-soliton solution for the KdV equation when |w1| > 2k is:

u1 = −2k2(1− coth2(k(x− x0 − 4k2t)) (35)
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The short animation below illustrates a one-soliton KdV solution with |w1| < 2k.

Figure 6: Animation showing an example of a one-soliton solution to the KdV equation

3.1.2 Two-soliton solution

The method to go from a one-soliton solution to a two-soliton solution was explained for the SG
equation. The same method is used to obtain the two-soliton solution for the KdV, that is, by using
the one-soliton solution and BPT.

Following calculations, the two-soliton solution to the modified KdV is found to be:

w12 = w0 −
4(λ1 − λ2)

w1 − w2
(36)

This equation indicates that if three solutions w0, w1 and w2 to the modified KdV equation are given,
then a fourth solution w12 can be derived. Eq. (29) can then be used to find the solution to the
KdV equation. For example, for a two-soliton solution, one can take w0 = 0, w1 = −2 tanh(x− 4t)
and w2 = −6 coth(3x− 108t), which are three single-soliton solutions to the modified KdV equation
Eq. (36) then becomes:

w12 =
−32

6 coth(3x− 108t)− 2 tanh(x− 4t)
(37)

Now, to obtain the two-soliton solution for these values of w0, w1 and w2, eq. (29) is used and
so eq. (37) needs to be integrated. Adding an integration constant simply shifts the graph on the
vertical axis and so it is set to zero. Using the quotient rule, the integration yields:

u12 = 64

[
9(1− coth2(3x− 108t)− sech2(x− 4t))

{6 coth(3x− 108t)− 2 tanh(x− 4t)}2

]
(38)

The animation below shows how this equation behaves as time is varied. As it can be seen there
are two waves: one bigger than the other. The bigger wave travels faster and overtakes the smaller
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wave. This shows that Scott Russell’s observations were correct. Solitons don’t merge but instead
the larger, faster wave overtakes the smaller wave.

Figure 7: Animation showing a two-soliton solution to the KdV equation

The waves in the animation above maintain their speed and shape as is expected for solitons.
However, the collision creates a phase shift. This is easily seen by animating the one-soliton solution
on top of the two-soliton solution.

Figure 8: Animation showing the phase shift following the collision of the two-soliton solution to
the KdV equation

In the animation above, the wave represented by the red line is the two-soliton solution and
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the waves represented by the green lines are two separate one-soliton solutions. The faster wave is
shifted forward while the smaller, slower wave is shifted backwards. Both waves are not shifted by
the same amount, namely, in this example, the faster wave is shifted less than the slower wave.

4 Conclusion

In conclusion, the one-soliton solutions to the SG and KdV equations were found using the method
of BTs. BPT was then introduced to find the general formula for the two-soliton solution for both
equations. The animations created in Maple illustrated various solutions to these equations such
as the one and two-soliton solutions and even breathers for the SG equation. These animations
showed the various properties of solitons, namely that their speed depend on their size and that
they maintain their shape when travelling. Towards the end of the report, it was seen that solitons
don’t merge but instead pass through each other creating a phase shift, similar to what Scott Russell
observed in 1834.

Obviously, more research can be done in the area of BTs and solitons. Firstly, no method has
been found yet on how to generate BTs consistently and therefore more work can be done on this
subject. Secondly, more can be researched on solitons in both the SG and KdV equations. The
one and two-soliton solutions on top of the knowledge gathered through BPT can be used to form
three-soliton solutions or even n-soliton solutions. The phase shift created when one soliton passes
through another one can be calculated for both the SG and KdV equations. The idea of solitons
can also be extended to two dimensions which are then called vortices.
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