
Symplectic Graphs over a Finite Local Ring

Monirul Choudhury

Supervisor: Dr. James Cruickshank

Abstract

The symplectic geometry of a vector space over a finite field can be used to
generate interesting examples of strongly regular graphs - informally speaking,
the regularity structure of these graphs capture the inherent symmetry of the
space. These graphs, so-called symplectic graphs, are well-studied in the finite
field case. This project provides a survey of the literature in this setting as
well as the more general setting over a finite local ring. A finite local ring
possesses a natural graded structure that is inherited by a free module defined
over it. We aim to capture this graded structure by introducing sequences of
generalized symplectic graphs and present some basic results concerning the
regularity, automorphism groups and chromatic numbers of these graphs.

Introduction

Strongly regular graphs were introduced in 1963 by Bose as graphs possessing
strong structure and symmetry in the field of spectral graph theory [10]. Owing
to this rare structure, enumerating interesting examples of these graphs has been
a long-standing fascination among graph theorists. In an intersection between
finite geometry and algebraic combinatorics, the notion of graphs derived from a
symplectic vector space (so-called symplectic graphs) were introduced by Tang
and Wan [2]. They showed that these graphs were strongly regular and also
determined their automorphism groups and chromatic numbers. In recent years,
these results have been generalized to the case of finite local rings [3][4]. In this
setting, it was found that the associated symplectic graph inherited much of the
structure from the case with finite fields but was generally no longer strongly
regular. In Chapter 2, we discuss these results as part of a review of the topic of
symplectic graphs. Finally, in Chapter 3, we introduce a generalized symplectic
graph defined over a particular class of finite local rings. We refer to these as
sequences of symplectic graphs and investigate their chromatic numbers and
automorphism groups. The appendix contains some basic results concerning
graph and ring theory that are a prerequisite for this project. We also include
an implementation of a method to generate symplectic graphs in SageMath.
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Chapter 1: Preliminaries

1.1 Graph Theory

Here we present some basic results relating to the topic of strongly regular
graphs. See [1] for further reading.

Strongly Regular Graphs

Definition: Suppose G is a graph with n vertices that is not complete nor the
union of complete graphs. We say G is a (n, k, a, c)−strongly regular graph if:

1. G is k-regular

2. any pair of adjacent vertices have a common neighbours

3. any pair of non-adjacent vertices have c common neighbours

Examples

1. The square graph is a (4, 2, 0, 2)-strongly regular graph.

2. The octahedral graph is a (6, 4, 2, 4)-strongly regular graph.

Square Graph Octahedral Graph

From this restrictive definition, we can also generate the eigenvalues of the
adjacency matrix A(G), as well as the multiplicities of these eigenvalues:

Proposition 1.1 (10.2 of [1]) LetG be a (n, k, a, c) strongly regular graph with
adjacency matrix A. The eigenvalues of A are given by k, θ, τ with multiplicities
1,mθ,mτ respectively, where:

θ =
(a− c) +

√
(a− c)2 + 4(k − c)

2
, τ =

(a− c)−
√
(a− c)2 + 4(k − c)

2
,
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mθ = − (n− 1)τ + k

θ − τ
,mτ = − (n− 1)θ + k

θ − τ

The numbers (n, k, a, c) are referred to as the parameter set of G. Due to the
rigid structure of the strongly regular graphs, there exist feasibility conditions
that a parameter set must satisfy in order for a strongly regular graph with that
parameter set to be possible. For instance, given possible values (n′, k′, a′, c′),
we can compute the multiplicities mθ′ ,mτ ′ using the equations from above. If
these values are not integers, then a strongly regular graph with that parameter
set is not possible. We now define a slight generalization of a strongly regular
graph.

Defintion: Suppose G is a graph with n vertices that is not complete nor the
union of complete graphs. We call G a (n, k, a, c)−Deza graph if:

1. G is k-regular

2. any pair of distinct vertices have either a or c common neighbours

1.2 Algebra

Local Rings

The intuitive idea behind a local ring is that they provide an easy way to classify
all the units of the ring. Using the axiom of choice, one can show that every
non-unit of a ring is contained in a maximal ideal. If a ring R has a unique
maximal ideal M , then a unit r ∈ R can be classified by the property that
r /∈ M .

Definition: Let R be a commutative ring. If R has a unique maximal ideal M ,
then R is said to be a local ring.

Proposition 1.2 Let R be a local ring with maximal ideal M . If r ∈ R, then
either r ∈ M or r is a unit of R.

Example: Let p be a prime number and n a positive integer. Then Zpn is a
local ring with maximal ideal (p). The residue field is Zp.

Let R be a finite local ring with maximal ideal M . R possesses a natural
stratification in the following way. For k ≥ 1 an integer, define Mk to be the
ideal generated by k elements in M . Since R is finite, there exists a positive
integer n such that Mn = {0}. Then the stratification on R is given by:

R \M ⊂ M \M2 ⊂ ... ⊂ Mn−1 \Mn

Roughly speaking, this containment determines ”how close an element is to be
a unit in R”. Units are contained in R/M and the further we move to the right,
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the further an element is to be a unit. For example, let R = Zpn for a prime
number p and an integer n ≥ 2. Note (p)k = (pk). The stratification on this
ring is given by:

Zpn \ (p) ⊂ (p) \ (p2) ⊂ ... ⊂ (pn−1) \ (pn)

If a ∈ (pi)/(pi+1), then pi divides a but pi+1 does not divide a. The following
definition formalizes this concept.

Definition: Let R be a finite local ring with maximal ideal M . Let n be the
least positive integer such that Mn = {0}. For r ∈ R, we define the valuation
of r, denoted v(r), in the following way:

v(r) =


0, if r is a unit in R

i, if r ∈ M i \M i+1 (for 1 ≤ i ≤ n− 1)

n, if r = 0

Modules

Much of the theory of vector spaces over a field can be generalized to the concept
of a module over a ring. In the present text, we consider only the case where
the underlying ring is commutative.

Definition: A non-empty set V is a module over a commutative ring R if
V is an abelian group under an operation + that is also equipped with maps
R× V → V , V ×R → V denoted rv⃗, v⃗r respectively satisfying:

1. r(u⃗+ v⃗) = ru⃗+ rv⃗

2. r(sv⃗) = (rs)v⃗

3. (r + s)v⃗ = rv⃗ + sv⃗

4. rv⃗ = v⃗r

for all u⃗, v⃗ ∈ V and r, s ∈ R.

Definition: Let V,W be R-modules. A map T : V → W is an R−module
morphism if for all v⃗1, v⃗2, v⃗ ∈ V :

• T (v⃗1 + v⃗2) = T (v⃗1) + T (v⃗2)

• T (rv⃗) = rT (v⃗)

If T is bijective, then T is an isomorphism between V and W .

In general, modules over a ring may not have a basis. Modules with a basis are
called free modules. If every basis of a module V is of the same cardinality n
(this is also not guaranteed), then we call V a free module of rank n.
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Example:

1. Trivial examples includeR as anR−module over itself, andRn = {(a1, a2, ..., an) :
ai ∈ R} with component-wise addition and scalar multiplication.

2. Let R = Z. If G is an abelian group, then we can turn G into a Z-module
by defining for any n ∈ Z, g ∈ G:

ng =


g + g + ...+ g (n times), if n > 0

0, if n = 0

−g − g − ...− g (n times), if n < 0

3. Let R = Z4 and consider the free module of rank 2, R2. A basis for this
module is {(0, 1), (1, 0)}. In the field case, any non-zero vector can be
turned into a basis vector. In this more general setting, this is no longer
true. For instance, consider (0, 2). Let (a1, a2) be some other vector and
now consider the linear combinations of {(0, 2), (a1, a2)}:

c1(0, 2) + c2(a1, a2) = (c2a1, 2c1 + c2a2)

Note that the vectors (0,1) and (1,0) cannot be simultaneously constructed
from this combination and thus (0,2) is never a part of a basis of R2.

A vector v⃗ ∈ V that is part of a basis of V is called a unimodular vector.
Unimodular vectors are particularly important when studying the theory of
symplectic forms over local rings, so we provide the following characterization
for them.

Proposition 1.3: Let V be a free module over a commutative ring R. Let
{v⃗1, v⃗2, ..., v⃗n} be a basis of V . Let v⃗ = x1v⃗1 + x2v⃗2 + ... + xnv⃗n. Then the
following are equivalent:

1. There exists an R−module morphism T : V → R with T (v⃗) = 1

2. The ideal (x1, x2, ..., xn) = R

3. v⃗ is unimodular

Proof: 1 ⇒ 2: Suppose the R-modular morphism T : V → R satisfies T (v⃗) = 1.
Then T (x1v⃗1 + x2v⃗2 + ...+ xnv⃗n) = x1T (v⃗1) + x2T (v⃗2) + ...xnT (v⃗n) = 1, where
each T (v⃗i) ∈ R for i = 1, 2, ..., n. Thus (x1, x2, ..., xn) = R.
2 ⇒ 1 : Suppose (x1, x2, ..., xn) = R. Then there exists y1, y2, ..., yn ∈ R such
that x1y1 + x2y2 + ... + xnyn = 1. If we let T : V → R be the R-module
morphism such that T (v⃗i) = yi for i = 1, 2, ..., n, then T (v⃗) = 1.
2 ⇒ 3: If (x1, x2, ..., xn) = R, then xi ∈ R× for i = 1, 2, ..., n. Thus we can
write: v⃗i = x−1

i (v⃗ − x1v⃗1 − ...− xi−1 ⃗vi−1 − xi+1 ⃗vi+1 − ...− xnv⃗n). Then it can
be shown that {v⃗, v⃗1, ..., ⃗vi−1, ⃗vi+1, ..., v⃗n} is a basis of V .
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3 ⇒ 1: Suppose {v⃗, w⃗1, ..., w⃗m} is a basis of V . Then we can define the R-module
morphism T : V → R by T (v⃗) = 1 and T (w⃗i) = 0 for i = 1, 2, ...,m.

Note that if V is a vector space over a field K, then all non-zero vectors are
unimodular.

1.3 Symplectic Geometry

The central notion of this topic is that of a symplectic form. We think of
this as a bilinear form that satisfies some additional properties. Intuitively, a
bilinear form induces a geometry on the space that its defined over, and this
is no different for a symplectic form. In the present text, we present only the
necessary algebraic details of the form but direct the reader to [9] for further
reading on the induced geometry.

Definition: Let R be a commmutative ring and let V be a free R−module. A
bilinear form on V is a map β : V × V → R that satisfies:

1. β(v⃗1+ v⃗2, w⃗) = β(v⃗1, w⃗)+β(v⃗2, w⃗) and β(v⃗, w⃗1+w⃗2) = β(v⃗, w⃗1)+β(v⃗, w⃗2)

2. β(λv⃗, w⃗) = λβ(v⃗, w⃗) and β(v⃗, λw⃗) = λβ(v⃗, w⃗)

for all v⃗, v⃗1, v⃗2, w⃗, w⃗1, w⃗2 ∈ V .

Definition: Let R be a commutative ring and let V be a free R-module of rank
2r, where r ≥ 1. A symplectic form on V is a bilinear form β that satisfies:

1. β(v⃗, v⃗) = 0 for all v⃗ ∈ V

2. for fixed v⃗ ∈ V , β(v⃗, w⃗) = 0 for all w⃗ ∈ V iff v⃗ = 0

Condition 1 is the main characterization of a symplectic form. When R is a local
ring, condition 2 allows us to relate any subspace W ⊂ V and the orthogonal
complement of W , W⊥ = {v⃗ ∈ V : β(v⃗, w⃗) = 0 for all w⃗ ∈ W}:

Theorem 1.4 (Proposition 1.1 of [6]): Let R be a local ring and let V be
a free R−module of rank 2r, where r ≥ 1. Let β be a symplectic form defined
on V . If W is a submodule of V , then:

rank(W ) + rank(W⊥) = rank(V )

Let v⃗, w⃗ ∈ V be unimodular. If β(v⃗, w⃗) = 1, then {v⃗, w⃗} is called a hyperbolic
pair. The submodule Rv⃗

⊕
Rw⃗ = {rv⃗+sw⃗ : r, s ∈ R} of V is called a hyperbolic

plane.

Theorem 1.5 (Theorem 1 of [6]): A symplectic space (V, β) over a local
ring R is a direct sum of hyperbolic planes.
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As a consequence of this theorem, the rank of any symplectic space is even. Fur-
thermore, V possesses a so-called canonical basis consisting of vectors {e⃗1, e⃗2, ..., e⃗2r},
where each { ⃗e2i−1, e⃗2i} is a hyperbolic pair for 1 ≤ i ≤ r. Let V be as above with
two symplectic forms β1, β2 with canonical bases E1 = {ei1 : 1 ≤ i ≤ 2r}, E2 =
{ej2 : 1 ≤ j ≤ 2r} respectively. Clearly the R-module morphism φ : V → V
given by φ(ei1) = ei2 induces an isomorphism between the symplectic forms,
that is, β2(v⃗) = β1(φ(v⃗)) for all v⃗ ∈ V .

Example: Let R be a local ring and let V be a free R−module of rank 2r,
where r ≥ 1. The prototypical example of a symplectic form in this text will be
defined using the 2r× 2r-matrix N constructed by taking r blocks of the form:[

0 1
−1 0

]
For v⃗, w⃗ ∈ V , the symplectic form β : V × V → R is defined by:

β(v⃗, w⃗) = v⃗TNw⃗

Symplectic Group

Let R be a local ring and let V be free R-module of rank 2r (where r ≥ 1). Let
β be a symplectic form defined on R.

Definition: An isometry φ : V → V is an isomorphism such that β(v⃗, w⃗) =
β(φ(v⃗), φ(w⃗)) for all v⃗, w⃗ ∈ V . The set of all such isometries forms a group
called the symplectic group Sp(V ).

When R is a finite local ring, the action of Sp(V ) on the unimodular vectors
is particularly interesting. In particular, Sp(V ) acts transitively on unimodular
vectors and hyperbolic pairs:

Lemma 1.6 (Lemma 3.2 of [4]) Let R be a finite local ring and let (V, β) be
a symplectic space defined over R. Then the following is true:

1. For v⃗, w⃗ ∈ V unimodular vectors, there exists an isometry φ ∈ Sp(V ) such
that φ(v⃗) = w⃗.

2. For hyperbolic pairs {v⃗1, v⃗2} and {w⃗1, w⃗2}, there exists an isometry φ ∈
Sp(V ) such that φ(v⃗1) = w⃗1 and φ(v⃗2) = w⃗2.
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Chapter 2: Symplectic Graphs

In this section, we discuss the theory of symplectic graphs as presented in the
literature. We present some basic results when R is a finite field [2] and then
extend this theory to when R is a finite local ring [3][4].

2.1 Over a Finite Field

Let Fq be a finite field of order q. Let V be a vector space of dimension 2r (r ≥ 1)
over Fq. Let β be a symplectic form defined on V . Let ∼ be the equivalence
relation defined on V \ {0} by v⃗ ∼ w⃗ iff v⃗ = λw⃗ for λ ∈ Fq. The symplectic
graph over Fq, GSp(F2r

q ), is then constructed as follows. The vertex set is the set

of all equivalence classes (V \{0})/ ∼. Adjacency is defined between [v⃗] and [w⃗]
iff β(v⃗, w⃗) ̸= 0.

Note that V and F2r
q are isomorphic and thus the symplectic graphs defined over

V and F2r
q are themselves isomorphic. What this means is that, for all intents

and purposes, we can take V = F2r
q . Similarly, since all symplectic forms over

a vector space are isomorphic, for computational purposes we consider only a
symplectic form. In this project we take the symplectic form defined using the
matrix N constructed in the previous section.

Examples: The following displays GSp(F2
3)
, GSp(F2

5)
, GSp(F4

2)
.

GSp(F2
3
) GSp(F2

5
) GSp(F4

2)

Note that GSp(F2
3)

is a complete graph on 4 vertices and GSp(F2
5)

is a complete
graph on 6 vertices. Also note that GSp(F4

2)
is a (15, 8, 4, 4)−strongly regular

graph.

Strong Regularity and Chromatic Number

Theorem 2.1 (Theorem 2.1 of [2]):

1. If r = 1, GSp(F2
q)

is a complete graph on q + 1 vertices.
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2. For r > 1, GSp(F2r
q ) is a strongly regular graph with parameters(

q2r−1
q−1 , q2r−1, q2r−2(q − 1), q2r−2(q − 1)

)
Proof: Suppose r ≥ 1. Note that F2r

q \{0} = q2r−1 and so (F2r
q \{0})/ ∼= q2r−1

q−1 .

Let [v⃗] ∈ V (GSp(F2r
q )). The degree of [v⃗] is equal to the number of [w⃗] /∈ [v⃗]⊥. By

Theorem 1.4, dim([v⃗]) + dim([v⃗]⊥) = 2r ⇒ dim([v⃗]⊥) = 2r − 1. Thus deg([v⃗])

= q2r−q2r−1

q−1 = q2r−1.

Let [v⃗], [w⃗] ∈ V (GSp(F2r
q )). [u⃗] ∈ V (GSp(F2r

q )) is adjacent to both [v⃗], [w⃗] iff

[u⃗] /∈ [v⃗]⊥ ∪ [w⃗]⊥. We have

|[v⃗]⊥ ∪ [w⃗]⊥| = |[v⃗]⊥|+ |[w⃗]⊥| − |([v⃗]⊥ ∩ [w⃗]⊥)|

where ([v⃗]⊥∩[w⃗]⊥) = [v⃗, w⃗]⊥. Once again by Theorem 1.5, dim([v⃗, w⃗]⊥) = 2r−2

and so the number of [u⃗] /∈ [v⃗]⊥ ∪ [w⃗]⊥ is equal to q2r−1−(q2r−1)−(q2r−1)+q2r−2

q−1 =

q2r−2(q − 1).

It can be shown that GSp(F2r
q )) is (qr + 1)−partite. As a consequence, the

following holds regarding the chromatic number:

Theorem 2.2 (Theorem 2.4 of [2]): χ(GSp(F2r
q )) = qr + 1.

Automorphism Groups

Earlier we made the point that almost all graphs have trivial automorphism
groups. The remarkable fact is that the symplectic graphs have strong regularity
structures and also have non-trivial automorphism groups, where the symplectic
group Sp(F2r

q ) induces automorphisms on Sp2r(Fq).

Theorem 2.3: Let T ∈ Sp(F2r
q ). Define by:

φT : V (GSp(F2r
q )) → V (GSp(F2r

q ))

φT ([v⃗]) = [T v⃗]

Then φT ∈ Aut(GSp(F2r
q )).

Furthermore, due to Lemma 1.6, elements of Sp(F2r
q ) induce vertex-transitive

and edge-transitive automorphisms on GSp(F2r
q ).

2.2 Over a Finite Local Ring

We now discuss the main case where R is a finite local ring. The main citations
for this section are [4] [5]. The results regarding this case involve combinatorial
arguments in the literature. The presentation of this section will differ in that
the theory will be extracted from the finite field case by considering the canonical
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map into the residue field. The main tool for this method will be Lemma 2.5,
which we prove in its entirety. First we outline the set-up.

Let R be a finite local ring with maximal ideal M and residue field k. Let V
be a free R-module of rank 2r (for r ≥ 1) equipped with a symplectic form
β : V × V → R. The vertex set of the symplectic graph GSp(V ) is the set of
lines Rv⃗ = {rv⃗ : r ∈ R and v⃗ a unimodular vector}. Vertices Rv⃗ and Rw⃗ are
adjacent to each other iff β(v⃗, w⃗) ∈ R×.

Example: GSp(Z2
9)

is a (12, 9, 6, 9)−strongly regular graph.

Let π : R → k be the canonical map defined by π(r) = r + M for r ∈ R and
let E = {e⃗1, e⃗2, ..., e⃗2r} be the canonical basis of V . The map π induces a map
from V onto the vector space k2r, which is given by:

π(x1e⃗1 + x2e⃗2 + ...+ x2r e⃗2r) = (π(x1), π(x2), ..., π(x2r))

In this way, every element of k2r can be written as π(v⃗) for some v⃗ ∈ V .
The requirement for using unimodular vectors in the construction of symplectic
graphs over local rings lies in the fact that π(v⃗) ̸= 0 iff v⃗ ∈ V is unimodular.
This can be seen in the following classification of unimodular vectors.

Theorem 2.4 (Theorem 2.2 of [4]) A vector v⃗ = x1e⃗1 + x2e⃗2 + ...+ x2r e⃗2r
in V is unimodular iff xi ∈ R× for some i = 1, 2, ..., 2r.

We can also define a symplectic form on k2r β′ derived from β as follows:

β′(π(v⃗), π(w⃗)) = π(β(v⃗, w⃗))

The important thing to note is that β′(π(v⃗), π(w⃗)) ̸= 0 iff β(v⃗, w⃗) ∈ R×, from
which the following lemma holds.
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Lemma 2.5 (Lemma 3.1 of [5]): Let R be a finite local ring with maximal
ideal M and residue field k. Let (V, β) be a symplectic space defined over R.

Let κ = |V (GSp(k2r))| = |k|2r−1
|k|−1 . Let x⃗1, x⃗2, ..., x⃗2r be unimodular vectors in V

such that:

V (GSp(k2r)) = {π(x⃗i) : i = 1, 2, ..., κ}

Let R(x⃗i +M2r) = {R(x⃗i + m⃗) : m⃗ ∈ M2r}. Then the following holds:

1. |R(x⃗i +M2r)| = |M |2r−1 for all i = 1, 2, ..., κ.

2. The set Π : {R(x⃗1 + M2r), R(x⃗2 + M2r), ..., R(x⃗κ + M2r)} is a graph
partition of V (GSp(V )).

3. For unimodular vectors v⃗, w⃗, Rv⃗ and Rw⃗ are adjacent vertices in GSp(V )

iff π(v⃗) and π(w⃗) are adjacent vertices in GSp(k2r).

4. For distinct i, j = 1, 2, ..., κ, if π(xi) and π(xj) are adjacent vertices, then
R(x⃗i + m⃗1) and R(x⃗j + m⃗2) are adjacent for all m⃗1, m⃗2 ∈ M2r.

Proof:

1. To count |R(x⃗i + M2r)|, first note that there are |M |2r vectors of the
form x⃗i + m⃗. The lines R(x⃗i + m⃗) however are not all unique. Suppose
R(x⃗i + m⃗1) = R(x⃗i + m⃗2). Then x⃗i + m⃗1 = α(x⃗i + m⃗2) and x⃗i + m⃗2 =
β(x⃗i + m⃗1). From this we see that αβ = 1 and that 1 − α ∈ M or
α = 1+ µ, µ ∈ M . Thus x⃗i + m⃗1 = (1 + µ)(x⃗i + m⃗2). On the other hand,
if x⃗i + m⃗1 = (1 + µ)(x⃗i + m⃗2) for µ ∈ M , then R(x⃗i + m⃗1) = R(x⃗i + m⃗2)

as (1 + µ) ∈ R× (R is a local ring). Thus |R(x⃗i +M2r)| = |M |2r
|M | as each

x⃗i + m⃗ contributes |M | times to the count of |R(x⃗i +M2r)|, one for each
such µ ∈ M .

2. Let ∼ be the equivalence relation on the vertex set V (GSp(V )) given by
Rv⃗ ∼ Rw⃗ iff π(v⃗) = π(w⃗). The resulting set partition of V (GSp(V ))
is the set Π. Let v⃗, w⃗ ∈ R(x⃗i + M2r) for some i = 1, 2, ..., κ. Then
β′(π(v⃗), π(w⃗)) = β′(π(x⃗i), π(x⃗i)) = 0 and thus β(v⃗, w⃗) /∈ R× and hence
Rv⃗ and Rw⃗ are not adjacent vertices in GSp(V ).

3. This follows from the fact β′(π(v⃗), π(w⃗)) ̸= 0 iff β(v⃗, w⃗) ∈ R×.

4. This follows from 3.
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Theorem 2.6: Let R be a finite local ring with unique maximal ideal M . Let
(V, β) be a symplectic space over R of dimension 2r. Then:

1. If r = 1, then GSp(V ) is a strongly regular graph with parameters

(|R|+ |M |, |R|, |R×|, |R|)

2. If r ≥ 2, then GSp(V ) is a strictly Deza graph with parameters(
|R|2r−|M |2r

|R×| , |R|2r−1, |R|2r−2|R×|, |R|2r−1
)

Proof: The main idea is to use Theorem 2.1 in conjunction with Lemma 2.5.

1. If r = 1, then the graph GSp(k2) is a complete graph on |k| + 1 vertices.
There are |k|+1 sets in the partition of V (GSp(V )) each with |M | vertices.
The number of vertices in GSp(V ) is then given by (|k|+1)(|M |) = |R|+|M |.
From (4) of Lemma 2.5, each vertex Rv⃗ is adjacent to |k||M | = |R| vertices
as GSp(k2) is complete.

Suppose Rv⃗,Rw⃗ are adjacent vertices. Then Rv⃗,Rw⃗ are in distinct sets in
the partition. The vertices adjacent to both are then the |k|−1 sets in the
partition in which they do not belong. This gives (|k| − 1)(|M |) = |R×|
such vertices.

Suppose Rv⃗,Rw⃗ are non-adjacent vertices. Then they belong to the same
set in the partition. Thus every vertex which either are adjacent to is a
vertex that both are adjacent to.

2. If r ≥ 2, the graph GSp(k2r) is a strongly regular graph with parameters

( |k|
2r−1

|k|−1 , |k|2r−1, |k|2r−2(|k| − 1), |k|2r−2(|k| − 1)). The proof is similar to

above to show that GSp(V ) satisfies the first two parameters.

Suppose Rv⃗,Rw⃗ are adjacent vertices. Note then that π(v⃗), π(w⃗) are
adjacent vertices with |k|2r−2(|k|−1) vertices of common adjacency. Thus
the vertices adjacent to both Rv⃗,Rw⃗ is given by (|M |2r−1)(|k|2r−2)(|k| −
1)) = |R|2r−2|R×|.
If Rv⃗,Rw⃗ are non-adjacent vertices then there are now two possibilities as
GSp(k2r) is no longer complete. Suppose Rv⃗,Rw⃗ are in the same set in the
partition of the vertex set. Once again the number of common adjacent
vertices is simply the degree of each vertex which is |R|2r−1.

IfRv⃗,Rw⃗ are non-adjacent vertices such that π(v⃗) ̸= π(w⃗), then π(v⃗), π(w⃗)
have |k|2r−2)(|k| − 1) vertices of common adjacency. This translates to
|R|2r−2|R×| vertices of common adjacency for Rv⃗,Rw⃗.

12



Theorem 2.7 (Theorem 3.2 of [5]): The chromatic number of GSp(V ) is
|k|r + 1.

Proof: Recall that χ(GSp(k2r) = |k|r+1 from Theorem 2.2. Let x⃗1, x⃗2, ..., x⃗2r be
unimodular vectors in V such that V(G(k2r)) = {π(x⃗i) : i = 1, 2, ..., κ}, where
κ = |V (GSp(k2r))|. Consider the subgraph induced by these vertices. Since this
graph is isomorphic to GSp(k2r), the chromatic number of this induced subgraph
is |k|r +1. Thus χ(GSp(V )) ≥ |k|r +1. Finally note that χ(GSp(V )) ≤ |k|r +1 as
GSp(V ) is |k|r + 1-partite.

The discussion of automorphism groups remains the same as in the finite field
case: elements of SpR(V ) induce graph automorphisms on GSp(V ). Due to
Lemma 1.6, certain induced automorphisms are vertex-transitive and edge-
transitive.

13



Chapter 3: Sequences of Symplectic Graphs

Here R = Zpn for n ≥ 2. Recall that R is a local ring which possesses a natural
stratification given by the valuation of the ring. In this context, the valuation
takes on a very particular form.

Definition: Let R = Zpn for n ≥ 2. For r ∈ R, the valuation of R is defined
by v(r) = i if pi divides r but pi+1 does not divide r. Then r = λpi for λ ∈ R×.

Where (V, β) was a symplectic space over R of dimension 2r, where r ≥ 1,
the vertex set of the symplectic graph GSp(V ) consisted of lines of unimodular
vectors. The aim of this section is to introduce a ”sequence of generalized
symplectic graphs” over R = Zpn where the vertex set of each symplectic graph
is more general. The main tool for this construction is the fact that the valuation
of the ring provides a natural stratification on V . First we outline the set-up.

Here V = R2r for r ≥ 1. Define an equivalence relation ∼ on V \ 0 by [a] ∼ [b]
if and only if a = λb for a λ ∈ R×. Denote by (V \ {0})/ ∼ the set of all
equivalence classes of this relation. The stratification on V is given by:

Definition: We say (a1, a2, ..., a2r) ∈ V is of type i if min{v(aj) : 1 ≥ j ≥
2r} = i. For i = 0, 1, ..., n−1, let Ti denote the set of all vectors in (V \{0})/ ∼
that are of type i.

Note that the vectors of type 0 are simply the unimodular vectors. Further note
that T0, T1, ..., Tn−i provides a partition of (V \ {0})/ ∼.

Proposition 3.1: |Ti| = (pn−i)2v−(pn−i−1)2v

pn−i−pn−i−1

Proof: Note that

(number of elements in R2r of type i) = (number of elements in R2r of type
≥ i) - (number of elements in R2r of type > i)

This is (pn−i)2v − (pn−i−1)2v. In each equivalence class there are pn−i − pn−i−1

such elements, corresponding to the number of units that change an element of
order i. Thus the formula holds.

Let N be the 2r×2r block diagonal matrix in Mat(R) with r blocks of the form[
0 1
−1 0

]
For simplicity, the symplectic form β is defined on V by β(a, b) = aTNb for
a, b ∈ V .

14



Proposition 3.2 Let a1, a2 ∈ Zpn with v(a1) = i, v(a2) = j, where j > i. Then:

1. v(a1 + a2) = i

2. v(a1a2) = i+ j if i+ j ≤ n and n if i+ j > n

Proof: For (1), we have a1 = λpi, a2 = λpj and so a1 + a2 = pi(λ+ µpj−i). By
property of local rings, λ+ µpj−i ∈ R×. The proof of (2) is similar.

Proposition 3.3 Let [a] ∈ Ti, [b] ∈ Tj . Then c(β([a], [b])) ≥ i+ j.

Proof: Note (β([a], [b])) = [a]TN [b] = a1b2 − a2b1 + ... + a2r−1b2r − a2rb2r−1.
The order of each ak ≥ i, and the order of each bl ≥ j and so the order of
akbl ≥ i+ j. Thus by the previous proposition, the order of the sum is greater
than or equal to i+ j.

3.1 General Construction

Define a sequence of graphs G0,G1, ...,Gn−1 derived from the symplectic form β
on V as follows. In each Gi, the vertex set is the union V (Gi) = T0 ∪ T1 ∪ ... ∪
Tn−i−1 and where two vertices [a] and [b] are adjacent if and only if:

v(β([a], [b])) < n− i

Note that Gn−1 is simply the symplectic graph GSp(Z2r
pn

).

Example: Let R = Z4, V = Z2
4. The sequence is outlined below in this case.

G0 G1

T0 vectors are denoted as red vertices, T1 are denoted as green vertices. Note
that the degree of each vector in T0 is 7 and the degree of each vector in T1 is
4 in G0. Also the degree of each vector in T0 is 4 in G1.

Example Let R = Z8, V = Z2
8. We outline the degree sequence of each graph.

G0 = [18, 14, 8, 18, 18, 18, 18, 18, 8, 18, 18, 14, 18, 14, 18, 14, 14, 8, 18, 14, 8]

G1 = [14, 8, 14, 14, 14, 14, 14, 14, 14, 14, 8, 14, 8, 14, 8, 8, 14, 8]
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G2 = [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]

In G0, T0 vectors are of degree 18, T1 vectors are of degree 14, T2 vectors are of
degree 8. In G1, T0 vectors are of degree 14, T1 vectors are of degree 8. Finally
G∈, T0 vectors are of degree 8. This idea generalizes in the following theorem.

Theorem 3.4: Consider the symplectic graph sequence with the set-up as
above. Let 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ n− j − 1. Then the following holds:

1. The degree of every element of Ti in the graph Gj is the same. Thus we
use the term ”the degree of Ti in Gj”, denoted deg(Ti)

j .

2. In Gj , we have:

deg(T0)
j > deg(T1)

j > ... > deg(Tn−j−1)
j

3. deg(Ti)
j = deg(Ti+1)

j−1

Proof:

1. Let [a], [b] ∈ Ti. Then we can write [a] = pi[a′], [b] = pi[b′], where [a′], [b′]
are unimodular vectors. Recall from Lemma 1.6 there exists an isometry
T ∈ SpR(V ) such that T (a′) = b′. Define by:

φT : V (Gj) → V (Gj)

φT ([v]) = [Tv]

Note that φT ([a]) = [b]. For a vertex [c], v(β([a], [c])) < n−j iff v(β(φT ([a]), φT ([c]))) =
v(β([b], φT ([c]))) < n− j as T is an isometry. Thus deg([a]) = deg([b]).

2. For 0 ≤ i ≤ n− j − 2, we show deg(Ti)
j > deg(Ti+1)

j . Consider pi+1[a] ∈
Ti+1, where [a] is a unimodular vector. Proposition 3.3 implies that if
pi+1[a] is adjacent to a vertex [c], then pi[a] is adjacent to [c]. Thus
deg(Ti)

j ≥ deg(Ti+1)
j .

To show this inequality is strict, note that there exists a unimodular vector
[b] such that β([a], [b]) ∈ R× or that v(β([a], [b]) ∈ R×) = 0 (to see that this
is true, consider the symplectic graph over a finite local ring constructed in
the previous section and note that each vertex has non-zero degree). Now
pi[a] is adjacent to pn−j−i−1[a] but pi+1[a] is not adjacent to pn−j−i−1[a]
by Proposition 3.3.

3. Let [a] be a unimodular vector. Let [c] ∈ V (Gj) such that v(pi[a], [c]) <
n − j. Then v(pi+1[a], [c]) = v(pi[a], [c]) + 1 < n − j + 1. Thus if [c]
is adjacent to pi[a] in Gj , then [c] is adjacent to pi+1[a] in Gj−1. Thus
deg(Ti)

j ≤ deg(Ti+1)
j−1. We can show the reverse inequality is also true

very similarly.
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3.2 The Case Where r = 1

The above theorem highlights some basic regularity structure when r ≥ 1. In
this section, we discuss the case where r = 1 more extensively.

Lemma 3.5: For all [a] ∈ Ti in G0:

deg([a]) = |V (G0)| − (|Tn−1|+ ...+ ...|Tn−i|+ pi(n− i))
= |Tn−i+1|+ ...+ |T0| − pi(n− i)

Proof: Let G0 denote the complement graph of G0. Here adjacency is defined
between vertices [a] and [b] if and only [a]N [b] = 0 mod pn. Without loss of
generality, let [a1, a2] = [λpi, µpk] ∈ Ti where λ, µ ∈ R× and k ≥ i. Then

[λpi, µpk]N [b1, b2] = pi(λb2 − µpk−ib1)

This is equivalent to solving b2 = λ−1µpk−1b1 mod pn−i. We have pn−i options
for b1 corresponding to the set of integers modulo pn−i, each giving a solution
for b2, denoted αm for m = 0, 1, ..., pn−i − 1. We can thus write the solution set
as follows:

{(0 + pn−ik0, α0 + pn−il0), (1 + pn−ik1, α1 + pn−il1), ..., (p
n−i − 1 +

pn−ikpn−i−1, αpn−i−1 + pn−ilpn−i−1)}

Here km, lm = 0, 1, ..., pi. Note that the vectors (0 + pn−ik0, α0 + pn−il0) in V \
0/ ∼ correspond precisely to the vectors in Tn−1, ..., Tn−i. If v(m) = 0, 1, ..., n−
i+1, then (m,αm+pn−ilm) gives all vectors of type m that solve this equation,
of which there are pi. Thus the degree of [a] ∈ Ti in G0 is equal to:

|Tn−1|+ ...+ ...|Tn−i|+ pi(n− i)

The result follows.

Theorem 3.6: Let 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ n− j − 1. If [a] ∈ Ti, then:

deg[a] = |Tn−i−j+1|+ ...+ |T0| − pi+j(n− i− j)

Proof: By Theorem 3.4, deg(Ti)
j = deg(Ti+1)

j−1 = ... = deg(Ti+j)
0. The result

follows from Lemma 3.5.

When r = 1, the graph sequence has an interesting combinatorial construction
using partitions. This construction can also be used to calculate the chromatic
number of each Gi.

Lemma 3.7: For k ∈ Zp, let Ai
k = {pi[1, pj + k], j ∈ Zpn−i−1} and Ai

p =

{pi[j, 1], 0 ≤ j < pn−i and p divides j}. Then the sets Ai
0, A

i
1, ..., A

i
p form a

partition of Ti.
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Proof: First we show that
⋃p

k=0 A
i
k = Ti. Clearly

⋃p
k=0 A

i
k ⊂ Ti so we show the

converse. Let [a, b] ∈ Ti. Consider two cases.
Case 1: [a, b] = [pi, λpl] where λ ∈ R× satifying 0 < λ < pn−l and n ≥ l ≥ i. If
l = i, then the result follows so suppose otherwise. Then write:

pi[1, λpl−i] = pi[1, p(λpl−i−1)]

Finally note that 0 ≤ λpl−i−1 ≤ pn−i−1. Thus [a, b] ∈ Ai
0.

Case 2: [a, b] = [λpl, pi] where λ ∈ R× satifying 0 < λ < pn−l and n ≥ l ≥ i. If
l = i, then [λpi, pi] = [pi, λ−1pi] and we return to the first case. If l > i, then
pi[λpl−i, 1] ∈ Ai

p.

Now suppose for 0 ≤ k ≤ l ≤ p, Ai
k ∩ Ai

l ̸= ∅. If l = p, k must also be equal to
p. If l ̸= p, this means that there exists j1, j2 such that:

pi[1, pj1 + k] = pi[1, pj2 + l] ⇒ p(j1 − j2) = l − k ⇒ p|l − k ⇒ l = k

as both l, k ∈ Zp.

Corollary to Lemma 3.7: For k = 0, 1, ..., p, |Ai
k| = pn−i−1.

Proof: Counting argument using above.

Let φ : (R2 \ {0})/ ∼→ (R2 \ {0})/ ∼ be defined by φ([a, b]) = p[a, b]. Then
φ(Ai

k) = Ai+1
k . In particular, let j ∈ Zpn−i−2 and let k ∈ Zp. Let jl = j +

lpn−i−2, where l ∈ Zp. Note that jl ∈ Zpn−i−1 and also that

φ(pi[1, pjl + k]) = pi+1[1, pjl + k] = pi+1[1, pj + k] ∈ Ai+1
k

Similarly if we let j ∈ Zpn−i−1 with p|j, we can consider jl ∈ Zpn−i defined by
jl = j + lpn−i−1. It also follows that:

ϕ(pi[jl, 1]) = pi+1[j, 1] ∈ Ai+1
p

We can conduct a similar analysis in the other direction with the conclusion
being that for k = 0, 1, ..., p, Ai

k is partitioned into pn−i−2 classes where each
class consists of p elements corresponding to the inverse image of some element
in Ai+1

k under φ.

Proposition 3.8 Let [a, b] ∈ Ai
k, [c, d] ∈ Aj

l with j > i. If ϕj−i([a, b]) = [c, d],
then β([a, b], [c, d]) = 0. Otherwise:

v(β([a, b], [c, d])) =

{
i+ j + 1, if k = l

i+ j, otherwise

The above theory allows us to construct the graph Gi in a more combinatorial
way. First write the vertex set V (Gi) = T0 ∪ T1 ∪ ... ∪ Tn− i− 1 as follows:
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A0
0 A1

0 . . . An−i−1
0

A0
1 A1

1 . . . An−i−1
1

...
...

. . .
...

A0
p A1

p . . . An−i−1
p

Recall that in this setting adjacency is defined between [a], [b] ∈ V (Gi) iff
v(β([a], [b])) < n− i. Assume that all vertices are connected and remove edges
as follows.

Let k = 0, 1, ..., p and let [aj,k, bj,k] ∈ Aj
k. There are three types of edges that

we need to remove.

1. For l = 1, 2, ..., n−i−1−j, remove edges between [aj,k, bj,k] and ϕl([aj,k, bj,k]).

2. If l + j ≥ n − i, then remove all edges between [aj,k, bj,k] and Al
m for

m = 0, 1, ..., p but m ̸= k.

3. If l + j + 1 ≥ n− i, then remove all edges between [aj,k, bj,k] and Al
k.

Corollary: The chromatic number of Gi is p + 1 if i = n − 1 and (p + 1)pn−1

otherwise.

Proof: If i = n − 1, this is the case covered by Theorem 2.7. Suppose i <
n − 1. For 0 ≤ k ≤ p, note that the graph consisting of the vertices in A0

k is
complete. Thus assign to each vertex in A0

k a unique colour. Then since each

Aj
k = ϕj(A0

k) for j = 1, 2, ..., n−i−1, these colours are sufficient for the sequence
A0

k, A
1
k, ..., A

n−i−1
k . Each sequence A0

k, A
1
k, ..., A

n−i−1
k is then coloured by pn−1

colours, with there being p+ 1 such sequences.
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Appendix

(A) Basic Concepts in Graph Theory

Let G be a graph. We denote the vertices of G by V (G) and the edges by
E(G). For vertices u, v, by u ∼ v we will mean that u and v are adjacent. The
complement of a graph G, denoted G, is constructed by taking the vertex set
of G and defining adjacency between vertices u and v if and only if u and v are
not adjacent in G.

A graph G is k-regular if every vertex in G has k neighbours. Let G be a graph
with n vertices. If every pair of distinct vertices are adjacent, then G is referred
to as the complete graph on n vertices, denoted Kn.

A graph G is k-partite if the vertex set V (G) can be partitioned into k disjoint
sets such that if two vertices are in the same set, then they are non-adjacent.

Suppose G is a graph with n vertices. The adjacency matrix A(G) is the n× n
matrix where the rows and columns correspond to the vertices of G and where:

A(G)u,v =

{
1, if u ∼ v

0, otherwise

Graph Automorphisms

Let G,H be graphs. A mapping φ : V (G) → V (H) is a graph homomorphism
if u ∼ v implies φ(u) ∼ φ(v). If φ is a bijection and φ−1 is also a homomor-
phism, then φ is a graph isomorphism. An isomorphism φ : V (G) → V (G) is
called an automorphism, and the set of all automorphisms form a group called
the automorphism group Aut(G), where the group operation is given by the
composition of maps.

Example: Aut(Kn) = Sn, the symmetric group of order n.

A well-known fact in graph theory is that almost all graphs are asymmetric, or
their automorphism consists only of the identity map. Graphs with non-trivial
automorphism groups are thus quite special and rare.

A graph G is said to be vertex-transitive if for all distinct u, v ∈ V (G), there ex-
ists φ ∈ Aut(G) such that φ(u) = v. If for any distinct edges (u1, v1), (u2, v2) ∈
E(G), there exists φ ∈ Aut(G) such that φ(u1) = u2 and φ(v1) = v2, then G is
said to be edge-transitive.
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(B) Basic Concepts in Ring Theory

Here we discuss the ideas of rings, ring homomorphisms, ideals, quotient rings
and also define a local ring. The discussion of these ring-theoretic concepts
will mirror the ideas of group homomorphisms, normal subgroups and quotient
rings. See [7] [8] for more details.

Basic Concepts in Ring Theory
We consider a ring as a generalization of a field - we remove the requirement
that multiplication is necessarily commutative and that multiplicative inverses
exist for all non-zero elements. In a ring, invertible elements are called units.
We will adopt the convention that the unit element 1 is in the ring, although
certain texts remove this property also. Explicitly, the definition reads:

Definition: A ring R is a non-empty set with two operations, + and ·, such
that:

• R is an abelian group under + with identity element 0

• a · b ∈ R (closure)

• a · (b · c) = (a · b) · c (associative law)

• a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c (distributive laws)

• 1 ∈ R such that a · 1 = 1 · a = a

Remark: From here on out, we will omit using · and so ab will be understood
to mean a · b.

Examples:

1. The ring of integers Z under the usual operations of addition and multi-
plication. The units of Z are 1 and -1.

2. For positive integer n, the ring of integers modulo n, Zn. Zn is a field if
and only if n is prime.

3. Let R be a ring. The set of all n × n matrices with entries in R, Mn(R)
is a ring where multiplication is given by ordinary matrix multiplication.
Note that multiplication is not necessarily commutative in this example.
If R is a field, then the units of Mn(R) are the matrices with non-zero
determinant.

Similar to group homomorphisms, we can consider ring homomorphisms.
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Definition Let R,R′ be rings. A map φ : R → R′ is a ring homomorphism if
for all a, b ∈ R:

• φ(a+ b) = φ(a) + φ(b)

• φ(ab) = φ(a)φ(b)

The set {r ∈ R : φ(r) = 0} is referred to as the kernel of φ, Ker(φ). If φ is
a bijection, then we call it an isomorphism and the rings R,R′ are isomorphic.
Alternatively, φ is an isomorphism if and only if Ker(φ) = {0}.

Ideals, Maximal Ideals and Quotient Rings

The theory of group homomorphisms imply the notions of normal subgroups
and quotient groups, and analogues to these ideas exist in ring theory as well in
ideals and quotient rings. The topic of quotient rings is very briefly discussed so
the reader is encouraged to see [topics in algebra] for a more in-depth treatment.

Definition: A non-empty subset U of R is an ideal if:

• U is a subgroup of R under addition

• For every u ∈ U, r ∈ R, ur, ru ∈ R.

Examples:

1. Trivial examples include the ring R itself and {0}. These are the only
ideals of a commutative ring R if and only if R is a field.

2. Let R be a ring and let A = {a1, a2, ..., ak} ⊂ R. The ideal generated by A,
denoted (a1, a2, ..., ak), is the set {a1r1+a2r2+...+akrk : r1, r2, ..., rk ∈ R}.

3. If R = Z, every ideal U is the ideal generated by some n ∈ Z. Note that if
p is a prime number dividing n, then (n) ⊂ (p). Also if U is an ideal such
that (p) ⊂ U , then either U = (p) or U = Z. In this sense the ideals (p)
are ”larger” than all other ideals (n). This idea motivates our definition
of a maximal ideal.

Definition: A maximal ideal M ̸= R of a ring R is an ideal such that if U is
an ideal of R satisfying M ⊂ U ⊂ R, then either U = M or U = R.

In example 2. above, the maximal ideals are precisely the ideals (p) generated
by prime numbers p. We now construct the quotient ring R/U from an ideal U
in a ring R.

Define the equivalence relation ∼ on R by r ∼ s if r − s ∈ U . For r ∈ R, if
r ∼ s, then s = r + u for u ∈ U . If we let r + U = {r + u : u ∈ U}, then the
equivalence classes can be denoted by r + U . Let R/U = {r + U : r ∈ R}. We
will turn this set into a ring by defining addition and multiplication by:

23



(a+ U) + (b+ U) = (a+ b) + U
(a+ U)(b+ U) = ab+ U

Addition and multiplication can be shown to be well-defined operations andR/U
can be shown to be a ring with these operations. The additive and multiplicative
identity are given by U and 1+U respectively. The rings R,R/U are related by
the homomorphism φ : R → R/U given by φ(r) = [r+U ]. Note that Ker(φ) =
U . The following theorem provides a necessary and sufficient condition for R/U
to be a field.

Theorem: Let R be a commutative ring with ideal M . Then R/M is a field if
and only if M is a maximal ideal. If R/M is a field, we refer to it as a residue
field.

Example: In Z, Z/(n) = Zn. This is a field if and only if n is prime.

(C) Code and Computations

In this section, we outline the code used to generate examples of symplectic
graphs in this project. Sagemath was used for these implementation. Let N be
the 2r × 2r block diagonal matrix in with r blocks of the form[

0 1
−1 0

]
For all computations in this project, the symplectic form β was defined using
the matrix N .

Symplectic Graphs over a Finite Field

Let Fq be a finite field of order q. The following code generates the symplectic
graph GSp(F2r

q ), where r ≥ 1.

1 #the function constructs the symplectic graph over F_q^2r for given

values of q and r.

2

3 def symplectic_graph_finite_field(q,r):

4

5 #contruct dictionary where the keys of the dictionary are

indices and the values are the elements of

6 #the projective space

7 proj_space = {}

8 j = 0

9 for i in ProjectiveSpace (2*r - 1, GF(q)):

10 proj_space[j] = vector(i)

11 j = j + 1

12

13 #construct symplectic matrix

14 v = [i for i in range (2*r) if i % 2 == 0]

15 N = matrix(GF(q) ,2*r, 2*r)
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16

17 for i in v:

18 N[i, i+1] = 1

19 N[i+1, i] = -1

20

21 #construct adjacency matrix , A is initialized as the zero

matrix and the (i,j) entry is changed to 1 iff

22 #the corresponding elements in the projective space are

adjacent.

23 A = matrix(j, j)

24

25 for i in proj_space:

26 for j in proj_space:

27 if i != j:

28 if (proj_space[i] * N * proj_space[j]) != 0:

29 A[i,j] = 1

30

31 return Graph(A)

Symplectic Graphs over a Finite Local Ring

Let R = Zpn , where p is a prime number and n ≥ 1. The code below generates
the symplectic graph GSp(R2r), where r ≥ 1..

1 #given n, generates the inverses in the ring Z mod n

2

3 def Inverses(n):

4 inverses = []

5 for i in Integers(n):

6 for j in Integers(n):

7 if mod(i*j,n) == 1:

8 inverses.append(i)

9 return inverses

1 #given (n, v), generates the vertex set of the symplectic graph

defined over the ring Z mod n

2

3 def vertex_set(n, v):

4 import numpy

5 inverses = Inverses(n)

6 tuples = [vector(t) for t in Tuples(Integers(n), 2*v)]

7 unimodular_vector = []

8

9 #remove all non -unimodular vector

10 for i in range(len(tuples)):

11 if any(j in inverses for j in tuples[i]):

12 unimodular_vector.append(tuples[i])

13

14 #remove multiples

15 for i in range(len(unimodular_vector)):

16 for j in range(len(unimodular_vector)):

17 if i != j:

18 for k in inverses:

19 if numpy.array_equal(unimodular_vector[j],

numpy.multiply(unimodular_vector[i],k)):

20 unimodular_vector[j] = zero_vector (2*v)
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21

22 new_tuples = [t for t in unimodular_vector if t != zero_vector

(2*v)]

23

24 return new_tuples

1 #given n and v, generates the symplectic graph over the module (Z_n

)^2v

2 def graph(n,v):

3 inverses = Inverses(n)

4 V = vertex_set(n,v)

5

6 j = 0

7 vertices = {}

8 for i in V:

9 vertices[j] = vector(i)

10 j = j+1

11

12 #construct symplectic matrix

13 r = [i for i in range (2*v) if i % 2 == 0]

14 N = matrix(Integers(n) ,2*v, 2*v)

15

16 for i in r:

17 N[i, i+1] = 1

18 N[i+1, i] = -1

19

20 A = matrix(j,j)

21

22 for i in vertices:

23 for j in vertices:

24 if i!=j:

25 a = vertices[i] * N * vertices[j]

26 if (a in inverses):

27 A[i,j] = 1

28

29 return Graph(A)

Sequences of Symplectic Graphs

The above code can be customized to generate the sequence of symplectic graphs
discussed in Chapter 3. For instance, to generate a more general vertex set we
use:

1 #given (n, v), generates the vertex set of the graph G_0 , i.e. the

non -zero vectors under the relation identifying multiples by

units

2

3 def vertex_set(n, v):

4 import numpy

5 inverses = Inverses(n)

6 tuples = [vector(t) for t in Tuples(Integers(n), 2*v)]

7

8 for i in range(len(tuples)):
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9 for j in range(len(tuples)):

10 if i != j:

11 for k in inverses:

12 if numpy.array_equal(tuples[j], numpy.multiply(

tuples[i],k)):

13 tuples[j] = zero_vector (2*v)

14

15 new_tuples = [t for t in tuples if t != zero_vector (2*v)]

16

17 return new_tuples

The function graph is adjusted by varying the adjacency condition in the final
block. As example, the following block was used to generate G1 over Z2

8:

1 for i in vertices:

2 for j in vertices:

3 if i!=j:

4 a = vertices[i] * N * vertices[j]

5 if ((a != mod(0,n)) and (a != mod(4,n))):

6 A[i,j] = 1

A cleaner, more general implementation is clearly possible using these ideas as
a basis but was not covered in this project.
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