CH205: Spectroscopy

3 lectures leading to ~12 MCQ questions

- Texts:
 - 2nd year Physical Chemistry Spectroscopy Notes.
- Many different analytical text books:
 - Harris: Quantitative Chemical Analysis.
 - Chapters: 19 & 20.
 - Higson: Analytical Chemistry.
 - Chapters: 5, 6, & 12.
 - Willard, Merritt, Dean & Settle: Instrumental Methods of Analysis, 7th ed.
 - Chapters: 6, 7, 11, & 12.
 - Various Specialist texts in Hardiman Library
- Notes & Links available on my website.
 - http://www.nuigalway.ie/chem/AlanR/
 - http://www.nuigalway.ie/nanoscale/undergraduate.html

2Y Spectroscopy: Topic 1

- Spectrometers:
 - Absorption spectroscopy (Beer-Lambert etc.)
 - Spectrometers (design, components etc.).
 - Fibre Optic probes & sampling
- Know the fundamentals of spectroscopy, spectrometer design, and fibre optics.

Wavenumber (cm\(^{-1}\))

Inverse of the wavelength in cm: \(\bar{\nu} = 1 / \lambda \)

Directly related to energy (\(\varepsilon\)): \(\varepsilon = h\nu = hc / \lambda = hc\bar{\nu}\)

- 500 nm = 0.5 x 10\(^{-4}\) cm = 20,000 cm\(^{-1}\) — Visible (high energy)
- 1000 nm = 1 x 10\(^{-4}\) cm = 10,000 cm\(^{-1}\)
- 2000 nm = 2 x 10\(^{-4}\) cm = 5,000 cm\(^{-1}\) — Near IR
- 5000 nm = 5 x 10\(^{-4}\) cm = 2000 cm\(^{-1}\) — IR (low energy)

Absorption spectroscopy

- Can refer to the absorption of any frequency of radiation, most common are:
 - UV-visible absorption (electronic).
 - IR absorption (vibrational).
 - NIR absorption (vibrational).
 - Microwave absorption (rotational).
- These are all types of molecular spectroscopy.
- Transition from Low to High energy states.
- Energy of the radiation \(\equiv\) energy of transition.
UV-Spectra

- Usually displayed:
 - Wavelength (nm) vs. absorbance (A), peaks up the page.
 - Not much detail for accurate identification & qualitative analysis.

Molar absorption coefficient (ε)

- Measure of how much light a molecule will absorb:
 - Larger value...more light absorption.
- Central to any quantitative analysis.
- Varies with wavelength.

Exponential Decrease with conc.

- Limits sample types:
 - Need relatively low absorbances
 - Lowish conc.'s (<0.01 M)
- Best Range:
 - Absorbance of 0.2 to 0.7
 - ~70% to 20% transmittance.

Solvents for UV-Visible absorption

- Polar solvents "blur" vibrational features more than nonpolar.
- Polar solvents more likely to shift absorption maxima.
- Shifts of λ_{max} with solvent polarity
 - hypsochromic/blue shift
 - bathochromic/red shift
Cuvette materials:

- Cuvettes (also Lenses, Prisms, gratings, filters):
 - Silica/quartz 200-3000 nm (UV-near IR).
 - Glass 400-3000 nm (vis-near IR)
 - Plastic PS: 350 nm – 1100 nm
 - Plastic PMMA: 300 nm – 1100 nm
 - NaCl 200-15,000 nm (UV-far IR)

Cuvette types:

- Select according to application:
 - Micro cells: small volumes, microlitres.
 - Flow: follow kinetics of a reaction.
 - Thermal: follow temp. dependances.
 - 1 mm cells: highly absorbing samples.

How to sample & measure

- Top down:
 - The spectroscopic techniques (selection rules, 2Y PChem).
 - The measurement instrumentation
 » what spectral information can be collected.
 - Sampling methods (how to collect spectra).
- Bottom Up:
 - What am I? Solid, liquid, gas.
 - Bulk, Trace, Big, Small
 - Complex, or single molecular entity.

Type of Analysis

- Quantitative:
 - Concentration: how much of a specific component is present.
 - Quality: How good is a material.
- Qualitative:
 - Identification: what is the material?
 - Classification: what class does the material belong to?
 - Analysis of variance: has the material/spectra changed?

Have to ask yourself, what do I want to know & with what precision.
Which Spectroscopy?

- Good for Qualitative:
 - Mid IR (FT-IR).
 - Raman spectroscopy.
 - Lots of spectral detail.
 - Functional group & structural analysis possible.

- Good for Quantitative:
 - UV-visible absorption.
 - NIR spectroscopy.
 - Broader bands, less spectral detail.

Chemometrics can be used to:
- Make mid-IR & Raman good for quantitative.
- Make NIR good for qualitative (ID & variance)

Light - Matter Interactions

- Have to look at instrument design carefully.

Spectrometers:

- Basic Design:
 - Light source.
 - Sampling system.
 - Wavelength selection.
 - Detection.

- Filter, Single or Dual Beam.
- Single Channel or multi-channel.

Absorption spectrometer

- Light source:
 - Need the right photon energies.
- Sample holder or sampling system:
 - Need to get the light into & out of the sample.
- Light selector:
 - Need to separate wavelength of light to see spectral detail.
- Light detector: have to measure the light, different detectors needed for different photon energies.
Light Sources

- Depends on the spectroscopy:
 - UV-visible:
 - Tungsten (300/350-1000 nm,)
 - Deuterium (200-400 nm)
 - NIR:
 - Incandescent / Quartz-Halogen.
 - Mid IR: 200 – 4000 cm\(^{-1}\)
 - Globar source: silicon carbide rod, heated to ~1500K.

Wavelength selection:

- Filters: mainly UV-visible
 - Inexpensive & very simple.
- Dispersive: all kinds of spectroscopy.
 - Very versatile.
- Fourier-Transform: mainly mid-IR & NIR
 - Found in most laboratories.

Filter Spectrometers

- Inexpensive
- Use glass (interference)
- AOTF:
 - Acoustic-optical tuneable filter

Filters (1): selecting wavelengths.

- Bandpass filters: allow light through, small wavelength range.
- Absorption filters: stop light getting through.

http://www.olympusmicro.com/primer/lightandcolor/filter.html
AOTF:

- A piezoelectric material (E) is attached to one end of the TeO2 crystal which, under excitation from an external radio frequency signal (RF), produces a mechanical (acoustic) wave which propagates through the crystal.
- The acoustic wave produces a periodic variation of the refractive index of the crystal in a frequency determined by the RF signal, in the range of 50 to 120 MHz.
- The interaction of the EM wave (A) and the acoustic wave causes the crystal to refract selectively a narrow wavelength band (B).

AOTF based instruments

- This device made of a birefringent crystal of TeO2, cut in a special angle. The characteristics of TeO2 are suitable for the UV-vis & NIR regions.
- Instruments based on Acousto-Optical Tuneable Filters (AOTF) are:
 - Scanning spectrophotometers with no moving parts.
 - Perfectly suited for fibre optics.
 - Are capable of reaching very high scan speeds.
 - Suitable for a broad range in the UV-visible & NIR spectral regions.
 - Scan speed is usually limited by the detector response time.

Pros & Cons of filter spectrometers

- PROS:
 - Can be inexpensive.
 - No moving parts.
 - Can be very compact.
 - Can be very accurate for selected applications.

- CONS:
 - Filters not available for all wavelength ranges.
 - Sometimes need full spectrum.

Dispersive optics-based instruments

- Uses diffraction gratings & monochromators:
- Diffraction grating:
 - Large number of narrow closely spaced lines on a reflective substrate.

\[n\lambda = d(\sin \theta - \sin \phi) \]

- d = groove separation.
- \(\lambda \) = wavelength of incoming light.
- n = an integer, \(\theta \) = angle of incident light.
- \(\phi \) = angle of reflected light.
Dual Beam spectrometer
- Reference & sample beam.
- Good accuracy.
- Complex optics.
- Lots of moving parts.

Basic Diode Array Spectrometer
- Multiple detector elements, fast.
- No moving parts (200-1100 nm in one shot).
- Can be very small.

Dispersive Multi-channel
- Spectrographs:
 - sensor array (D) allows to scan an entire spectra in a few milliseconds, OR,
 - Use fixed grating for robust spectral data collection.

PE λ950 versus Ocean optics
- Multichannel vs. Scanning dual beam:
 - Much smaller.
 - No moving parts.
 - Inexpensive.
 - Is portable.
 - Is rugged.
Pros & Cons of dispersive systems

PROS:
- Mature & relatively inexpensive technology.
- Suitable for a wide range of spectroscopies.
- Large spectral ranges.

CONS:
- Slow scan speed.
- Lack of wavelength precision.
- Reproducibility.
- Precision moving parts: limits the use of dispersive instruments in the field and in more aggressive environments.

Detectors: measure the light

The Ideal Detector for Spectroscopy:
- 100% efficient at all wavelengths:
 - Measure/count every incoming photon.
- High sensitivity:
 - Give a strong signal for each photon.
- Fast:
 - Take a spectrum/measurement every microsecond (or faster).
- Low noise:
 - Able to measure very small differences in signals.
- Inexpensive...i.e. very cheap.
- Hardwearing & Robust: student proof.
- Can get some but not all...trade off.

UV-Visible Spectrometers: detectors

- PMT: photomultiplier tube.
 - Used in single & dual beam spectrometers.
 - Very mature technology.
 - Not very robust, easily broken.
 - Very sensitive & good S/N.
- Silicon Photodiodes:
 - Used in inexpensive single & dual beam spectrometers.
 - Very mature & robust technology.
 - Low sensitivity & relatively poor S/N.
- CCD: Charge coupled devices
 - Used in multichannel spectrometers.
 - Now a mature & fairly robust technology.
 - Good sensitivity & good S/N (can be very good but expensive EMCCD)

Photomultiplier Tube: single channel

- Incoming photon of light strikes photocathode.
 - Ejects electrons, high voltage moves e’s towards dynodes.
 - Every time electron hits a dynode, ejects more electrons.
 - Eventually a large amount of electrons reach anode and are registered as a current.
 - More Photons → Larger current: Domino effect.
 - Different photocathodes give different wavelength sensitivity.
CCD detector: multichannel.

- Charge Coupled Device (CCD): silicon based.
- Photon creates a free electron & “hole”...
- Free electron collected in a potential well...then read out.
- Used for Raman, UV-VIS, Fluor, X-Ray, etc. applications.

http://www.andor.com/learn/digital_cameras/

Fibre Optic Probes: in-situ sampling

- Very Flexible:
 - Probe into…bodies, oceans, cells, reactor vessels, etc.

www.hellma-worldwide.com

Total Internal Reflection

- Ray of light strikes boundary between two media:
 - Refraction (θ_1)
 - Reflection (θ_2)
- Critical Angle (θ_C):
 - Angle above which reflection occurs.

$$\theta_c = \arcsin \frac{n_2}{n_1}$$

Fibre Optics: How it works

- Total Internal Reflection:
 - Refractive Index.
 - Core $n_1 >$ cladding n_2
 - Acceptance angle (α): angular aperture.
 - Bigger α, more light collected.
 - Fibre core: varying core sizes
 - 8 - 10 µm (single mode, communications).
 - 50 – 1000 µm (multi-mode, spectroscopy).
Probe designs: transmission

- Glass or quartz fibres:
- Defined path length.
- Different tip designs.
- Not good for corrosive environments.

Probe designs: reflection

- Can use single or multiple fibres.
 - Used for Raman & Fluorescence measurements.
 - Exciting & Sample light along same path.
 - Window made out of:
 - Quartz: good transmission
 - Sapphire: chemical protection

Reflection Probes:

- One excitation Fibre.
- Six collection Fibres.
- Separately coupled.

- Raman & Fluorescence spectroscopy.
- Better light collection efficiency than single fibre.

Specular vs. Diffuse reflectance:

- Specular: Mirror like reflection.
 - Not always good for spectroscopy.
- Diffuse: scattered at lots of different angles.
 - Used widely in spectroscopy.
Pros & Cons of Fibre optics

- **PROS:**
 - Flexible sampling.
 - Lots of different types.
 - Relatively inexpensive.
 - Can be sterilised...

- **CONS:**
 - Lose a lot of light compared to free space optics.
 - Fibres can be destroyed by bending.
 - Only certain wavelength ranges available.
 - Immersion probes can be:
 - Fouled by growth.
 - Corroded by chemicals.

CH205 Spectroscopy: Topic 2

- Sampling for FT-IR: spectroscopy:
 - Instrumental factors: windows etc.
 - Nujol mulls, KBr disc, Solution cells,
 - Attenuated Total Reflection
 - Microscopy & chemical imaging
 - Forensic case study: fingerprints & paint.

- Understand and be able to explain the different modes of sampling:

IR-absorption spectroscopy

- Light absorbed by molecule:
 - passes light through the sample.
 - Measure how much absorbed.

- Vibrational transitions (lowish energy)
 - IR radiation (2 µm to 1000 µm)
 - (5000 cm\(^{-1}\) to 10 cm\(^{-1}\))

- Spectra from ~400-600 cm\(^{-1}\) to 4000 cm\(^{-1}\)

- Obeys Beer-Lambert (linear with conc., dilute systems.

Typical IR spectrum

Plot of % Transmittance Versus Wavenumber

<table>
<thead>
<tr>
<th>Vibration type</th>
<th>cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–H</td>
<td>2850–2960</td>
</tr>
<tr>
<td>C–H</td>
<td>3000–3050</td>
</tr>
<tr>
<td>C–C stretch, band</td>
<td>700–1250</td>
</tr>
<tr>
<td>C–O stretch</td>
<td>1640–1760</td>
</tr>
<tr>
<td>O–H stretch</td>
<td>3300–3650</td>
</tr>
<tr>
<td>C=O stretch</td>
<td>1600–1700</td>
</tr>
<tr>
<td>C=N stretch</td>
<td>2215–2275</td>
</tr>
<tr>
<td>N–H stretch</td>
<td>3200–3570</td>
</tr>
</tbody>
</table>

Hydrogen bonds: 3200–3570
IR spectrometer: DISPERSIVE

- Dispersive, wavelength separation using grating scan across different wavelengths to make spectrum. Use slits to make small wavelength steps for resolution (loses light).
- Not very common now / Mainly research systems.
- Difficult alignment, lots of mirrors.

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/ir-instr.htm

Fourier Transform Spectrometer

- Most modern IR spectrometers are Fourier-Transform (FT) based and use a Michelson Interferometer.
- All light frequencies at once.
- Faster than scanning

FT-IR advantages:

- **Multiplex:** Each point in the interferogram contains information from each wavelength of light being measured.
- **Throughput:** No slits, fewer mirror surfaces (lower reflection losses) than in a dispersive spectrometer. Overall, more light reaches detector.
- **Precision:** laser used to control mirror & wavelength calibrate, very precise.

Windows For IR sampling

- IR low frequency cut-off cm⁻¹
- Normal cell windows
 - NaCl (650), KBr (350), AgCl (350)*, CsI (200)
 - *=insoluble in H₂O
Background Spectra:
- CO₂ band very strong.
- Cutoff ~400 cm⁻¹ due to KBr windows.
- Weak bands due to thin polymer coating on windows.

FT-IR Gas Cells:
- Use NaCl or KBr end windows.
- Needs long pathlength.
- Low concentration.
- High resolution.
- More in 3rd Year.

FT-IR solution cells
- Organic solvents: generally non-aqueous / non-polar
- NaCl windows.
- Variable pathlength: Teflon shims (0.1-1 mm)

Solvents for IR absorption
- Try & avoid polar solvents:
 - strong absorptions, have to be dry, & hydrogen bonding.
 - Difficult to see sample peaks.
- Hydrocarbons & chlorinated HCs:
Pros & Cons of solution cells

PROS:
- Can observe solvent-solute interactions.
- Can look at dilute solutions.
- Gives narrow bands for analysis.
- Relatively simple method.

CONS:
- Extensive sample prep. & specialist sample holder needed.
- Changes sample.
- Have to use very pure & specific solvents.
- Have to use very dry solvents & sample.
- Cannot scan below 400 cm⁻¹.
- Can't do in-situ sampling.

FT-IR Nujol mull Cell

- Organic Liquids or mulls.
 - Liquids
 - Thin layer (one drop).
- Halide salt windows:
 - ~25 mm diameter.
 - NaCl cheapest.
 - CsI for low wavenumber studies.
- Have to clean carefully.
- Have to re-polish.
- Very fragile

Nujol mulls:

- The large refractive index change on going from solid to air bends the IR beam and most of the beam is scattered.
- The refractive index of Nujol is closer to that of a solid. There is less bending of the IR beam and the sample has better optical properties.

Nujol

- Nujol: heavy paraffin oil...all alkanes.
 - Peaks in well defined areas.
 - Good for carbonyl analysis.
- Always aim for transmittance above ~25%.
- Want sharp peaks.
- Square ends are bad: means out of range.
Nujol Mull method

- Dry grind sample to reduce the crystal size:
 - ~5 mg of sample will be enough.
 - Use agate mortar & pestle:
- Add mulling liquid (one drop) and mix:
 - Need well dispersed mull.
- Wet grind
- Transfer to NaCl flats and squeeze out
- Examine & analyse

Sample Nujol Mull spectra

- Always aim for transmittance above ~25%.
 - Takes practice.
- Want sharp peaks.
- Square ends are bad: means out of range.

Pros & Cons of Nujol mull sampling

PROS:
- Relatively simple method.
- Relatively inexpensive.
- Suitable for a wide range of compounds.

CONS:
- Nujol peaks obscure sample bands.
- Extensive sample preparation & skill required.
- Physically destructive of sample.
- Contaminates sample.
- Have to use very pure Nujol.
- Cannot scan below 200 cm$^{-1}$.
- Can't do *in-situ* sampling.

KBr Discs

- Grind up in mortar & pestle:
 - 1-2 mgs of sample
 - 250 mgs dry KBr.
- Fine dispersion.
- Use very dry & good KBr.
- Use hydraulic press & die kit to make thin disc.
- Have to keep in desiccators.
Spectroscopy handout

Sample KBr disc spectra

- No useable detail: peaks smeared together, too intense.

Dilution effects:

- Dilution, reduces amount light absorbed.
- Peaks, are sharper, easier to see & analyse.

Pros & Cons of KBr sampling

- PROS:
 - Relatively simple method.
 - Gives spectra of solid form.
 - Useful for removing heterogeneity effects (large sample area)

- CONS:
 - Extensive sample prep. & skill required.
 - Destructive of sample.
 - Have to use very pure KBr.
 - Have to use very dry KBr & sample.
 - Cannot scan below 400 cm\(^{-1}\).
 - Can’t do in-situ sampling.

ATR improvement in spectra:
Evanescent Wave

- Total Internal reflection:
 - Same as for fibres.

- Penetration of light into lower RI medium:
 - FIR ~700 µM

ATR: Schematic

ATR materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Cut off (cm(^{-1}))</th>
<th>Refractive Index</th>
<th>pH Range</th>
<th>Hardness (Kg/mm(^2))</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSe</td>
<td>525</td>
<td>2.42</td>
<td>5-9</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>780</td>
<td>4.0 (0.65 µm)</td>
<td>1-14</td>
<td>550</td>
<td>More Chemically resistant than ZnS & KRS-5</td>
</tr>
<tr>
<td>Si</td>
<td>1500</td>
<td>3.4</td>
<td>1-12</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>Diamond/ZnSe</td>
<td>524</td>
<td>2.4 (1.66 µm)</td>
<td>1-14</td>
<td>5,700</td>
<td></td>
</tr>
<tr>
<td>KRS-5:</td>
<td>250</td>
<td>2.37 (1.73 µm)</td>
<td>5-8</td>
<td>40</td>
<td>Slightly soluble in H(_2)O</td>
</tr>
</tbody>
</table>

Advantages of ATR sampling
- Minimal Sample preparation
- Can use liquids or solids.
- Can adapt with reaction & temperature cells.
- Small sample size: microsampling, single xtals. & fibres.

Disadvantages of ATR sampling
- Sample needs to be in contact with surface:
 - Deform sample using pressure.
 - Not great for big samples.
 - Difficult to analyse precisely very small particles.
- Can’t use for some chemicals:
 - Conc. H₂SO₄ would digest ZnS
 - Chemical reactions will damage xtal etc.
- Can’t be used for very low wavenumbers:
- Only very small sample size.

Quantitative Analysis by mid-IR:
- IR more difficult than UV-Vis because
 - Very sensitive to environmental conditions.
 - Weak incident beam.
 - Complex spectra.
 - Narrow bands (big variation in ε).
 - low transducer sensitivity.
 - Solvent absorption.
- Chemometrics can resolve some of these issues but not all.

IR Microscopy
- Can couple mid-IR spectrometers to special microscopes.
- Reflection based optics: all gold coated mirrors.
- Examples:
 - Film thickness
 - Forensic Paint
 - Narcotics.
Pros & Cons of IR microscopy

PROS:
- Allows analysis of very small samples ~10-20 µm in size.
- Non-destructive.
- Non-contact.
- Gives molecular fingerprint from spectra.
- Scan across surfaces.

CONS:
- IR radiation = long wavelength = large spot size: ~10 µm
- Can’t focus through water/glass.
- Expensive optics

Chemical Imaging

- Any technique where each pixel yields chemical information:
 - FT-IR spectrum taken @ each point.
 - Raman spectrum taken @ each point.
 - NIR spectrum taken @ each point
 - Select & plot vibrational mode intensity.

- Becoming more common:
 - Disadvantage: can be slow & generates very large amounts of data.

Analysis of paint chips: example

4-7 layers in each sample, 0.02 mm thick slices, perpendicular to the layers.
Mount on microscope & sample different layers.
Use spectra to discriminate different layers & identify the composition.

Fingerprint Analysis:

- ATR FT-IR chemical image and corresponding spectra of the protein distribution within a fingerpad surface.
- Imaged area is ~ 3.2 × 4.5 mm².
- 16 co-added scans, collection time of 13 s at a spatial resolution of ~50 µm.

www.varianinc.com
CH205 Spectroscopy: Topic 3

- NIR spectroscopy:
 - Theory.
 - Bands: overtones & combinations.
 - Instrumentation.
 - Sampling modes.
 - Chemometrics.
 - Measurement Examples.

- Be able to explain in detail the concept, and implementation of NIR spectroscopy.

Introduction to NIR

- Type of vibrational spectroscopy.
- Photon energies \((h\nu)\):
 - range of \(2.65 \times 10^{-19}\) to \(7.96 \times 10^{-20}\) J,
- Wavelength range of 750 to 2,500 nm.
- Widely used in Industry.

Characteristics of NIR spectroscopy

- Non-destructive: preserves samples for later analysis.
- Minimal Sample preparation:
 - in-situ measurements.
- Fast (one minute or less per sample): Allows analysis of many samples,
 - high throughput.
- Uses NIR light: inexpensive quartz optics & fibre probes, deep penetration of sample (mm):
 - flexible sampling.
- The combination of these characteristics with instrumental control & chemometrics has made it very popular for Process Analytical technologies.

Brief History:

- Not widely adopted until 1990's.
- Generally thought that not much info. In spectra.
- Needed computational tools to take off.
 - 2000-2009: 11,774 (6150)
 - 1990-1999: 3,551 (1,575)
 - 1980-1990: 575 (112)
 - 1970-1979: 256 (5)
Diatomic Model: harmonic oscillator

- Both atoms move in a vibration.
- Need to use detailed calculations:
 - Schrödinger wave equation (3rd year)
- \(v = \text{vibrational quantum number.} \)
- \(\nu = \frac{k}{2\pi\sqrt{\mu}} \), \(\mu = \text{effective mass} \)

NIR Theory

- Anharmonicity allows:
 - \(\Delta\nu \geq \pm 1 \): overtones: Multiple energy level jumps (overtones).
- Thus the absorptions in the NIR range are:
 - neither electronic transitions (observed in the UV and visible regions) nor fundamental vibrations.
 - NIR absorptions are due to combinations and overtones of the fundamental vibrations.
 - Thus a \(\nu(\text{C-H}) \) vibration at 3000 cm\(^{-1} \) would have an overtone at \(\approx 6000 \) cm\(^{-1} \).
 - Overtones and combinations (e.g. \(\nu(\text{C-H}) + \nu(\text{O-H}) \)) are weak because they are strictly non-allowed quantum mechanically but they can be detected.

Band Intensity:

- Intensity of a given absorption band is:
 - associated with the magnitude of the dipole change during the vibration & with its degree of anharmonicity.
 - More polar \(\rightarrow \) Stronger absorption.
NIR bands:

http://www.foss-nirsystems.com/

The NIR advantage

- Low absorptivities of bands are compatible with moderately concentrated samples & longer path lengths:
 - Long pathlengths enable transmission thru intact materials.
 - Allows for non-destructive analysis: no sample prep.
 - Intact, opaque, samples can be analysed by diffuse reflectance.

Instrumentation

- A NIR spectrophotometer can be assembled with UV-Visible optical components:
 - Makes it less expensive & more rugged compared to mid-infrared (MIR) spectrophotometers.
 - Can be Dispersive, FT, or filter based.
- Most common Detectors for the NIR spectral region are based on:
 - Silicon, PbS.
 - InGaAs multichannel arrays.
 - Can get very high signal-to-noise ratio for NIR measurements.
Handhelds & probes

- 1000 to 1800 nm, or
- 1600 to 2400 nm
- InGaS array (multi)
- Tungsten bulb

InGaAs linear array

NIR probe systems

- Compact benchtops:
 - Multiple detectors.
 - Fibre optic probes as standard.
 - Various designs

NIR sampling modes

- Transmittance
- Transfectance
- Diffuse reflectance
- Interactance

Uses of NIR spectroscopy:

- Widely used in the analysis of:
 - Grains (moisture & protein content)
 » From the 1970’s.
 - Foodstuffs (see KVL for sample datasets & apps)
 - Pharmaceutical raw materials:
 » Identity & quality and concentration checks.
 - Biotechnology raw materials:
 » Identity & quality and concentration checks.
NIR vs mid-IR

- **NIR:**
 - ~10-100 times weaker.
 - Broad bands (50-100 nm)
 - 700 – 2500 nm
 - Glass optics.
 - Versatile sampling.
 - Good for quantitative.
 - Poor for qualitative.
 - Functional group analysis is difficult.

- **Mid-IR:**
 - Strong bands.
 - Narrow bands (10-50 cm\(^{-1}\))
 - 2000 – 10000 nm.
 - Halide salt optics.
 - Restricted sampling.
 - Poor for quantitative.
 - Good for qualitative.
 - Functional group analysis is easy.

Chemometrics: 4 steps.

- Use of mathematical & statistical techniques for extracting relevant information from analytical data:
 - **Experimental design:** what do you want to measure, how, what information do you need.
 - **Data collection:** collection of accurate, reproducible, and representative data.
 - **Data pre-treatment:** how to treat data to remove artefacts & instrumental noise.
 - **Data analysis:** mathematical analysis to extract quantitative or qualitative information and present the data/results.

Spectral Data Pre-treatment

- NIR spectral data set normally undergoes some type of pre-treatment before being used for qualitative or quantitative purposes:
 - Remove Baseline effects: can be caused by excessive scatter, normally offset & sloping effects
 - Remove noise:
- First and second derivatives of the original spectra are usually the best.

Chemometric Methods

- Most common chemometrics methods used with NIR spectroscopy are:
 - **Qualitative Analysis:**
 - Principal Component Analysis (PCA)
 - Soft Independent Modelling Correlation Analysis (SIMCA)
 - **Quantitative analysis:**
 - Multiple Linear Regression (MLR).
 - Principal Component Regression (PCR).
 - Partial Least Square Regression (PLS).

- All presuppose a linear relationship between the spectral data and the concentration or other property value to be determined.
Quantitative Analysis: PLS

• For quantitative analysis (revise Practical 6):
 • A partial least squares (PLS) calibration is built by collecting spectra on a set of known concentration samples under identical conditions.
 • The spectral data & known concentration data are input into a commercial software package, thus, creating a PLS calibration.

Forensic example

• Quantitative analysis of Ecstasy tablets:
 – Collect tablets & acquire NIR spectra.
 – Analyse concentration using HPLC.
 – Use PLS to generate model.