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Optimizing the AC Resistance of Multilayer
Transformer Windings with Arbitrary Current

Waveforms
William Gerard Hurley, Senior Member, IEEE, Eugene Gath, and John G. Breslin, Student Member, IEEE

Abstract—AC losses due to nonsinusoidal current waveforms
have been found by calculating the losses at harmonic frequencies
when the Fourier coefficients are known. An optimized foil or layer
thickness in a winding may be found by applying the Fourier anal-
ysis over a range of thickness values. This paper presents a new
formula for the optimum foil or layer thickness, without the need
for Fourier coefficients and calculations at harmonic frequencies.
The new formula requires the rms value of the current waveform
and the rms value of its derivative. It is simple, straightforward and
applies to any periodic waveshape.

Index Terms—AC resistance, magnetic circuits, optimization,
switching circuits, transformers.

NOMENCLATURE

Thickness of foil or layer.
Duty cycle.
Fundamental frequency of the current waveform in
Hz.
Average value of current.
RMS value of the th harmonic.
RMS value of the current waveform.
RMS value of the derivative of the current wave-
form.
Ratio of the ac resistance to dc resistance atth
harmonic frequency.
Number of turns per layer.
Harmonic number.
Number of layers.
Radius of bare wire in wire-wound winding.
AC resistance of a winding with sinusoidal excita-
tion.
DC resistance of a winding.
Effective ac resistance of a winding, with arbitrary
current waveform.
DC resistance of a winding of thickness.
Rise time (0–100%).
Period of the current waveform.

, skin depth at fundamental frequency,
.

Skin depth at the th harmonic frequency.
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.
Porosity factor (see Fig. 1).

.
Permeability of free space, H/m.

I. INTRODUCTION

T RANSFORMERS are operated at high frequencies in
order to reduce their size [1]. Switching circuits and res-

onant circuits have greatly improved the efficiencies of power
supplies. These power supplies have nonsinusoidal current
waveforms and give rise to additional ac losses due to har-
monics. AC resistance effects due to sinusoidal currents were
treated by Bennett and Larson [2] and this work was tailored
specifically for transformers by Dowell [3]. These works are
based on a one-dimensional solution of the diffusion equation
as applied to conducting parallel plates. Dowell’s formula has
been found to reliably predict the increased resistance in cylin-
drical windings where the foil or layer thickness is less than
10% of the radius of curvature. The formula has been utilized in
many applications such as planar magnetics by Kassakian [4]
and Sullivan [5], matrix transformers by Williams [6], toroidal
inductors by Cheng [7], distributed air-gaps by Evans [8] and
slot bound conductors by Hanselman [9].

With the advent of switch mode power supplies, attention
switched to nonsinusoidal current waveforms. These currents
were decomposed into Fourier components; the harmonic com-
ponents are orthogonal so that the total loss is equal to the sum of
the losses calculated by Dowell’s formula for the amplitude and
frequency of each harmonic in turn. Venkatraman [10] showed
that for a pulsed waveform typical of a forward converter, there
is an optimum layer thickness to minimize ac losses. Carsten
[11] extended the analysis to square waveforms, which are en-
countered in full bridge converters and to triangular waveforms,
which occur in filter chokes. Vandelac [12] extended the anal-
ysis to flyback converters. The optimum layer thickness is found
as follows.

1) Calculate the Fourier coefficients.
2) Calculate the losses at each harmonic frequency.
3) Calculate the total losses for each thickness in a range of

values.
4) Read the optimum thickness from a graph of ac resistance

versus layer thickness.

Typically this might involve loss calculations at up to 30 har-
monics for up to 10 thickness values in order to find the optimum
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Fig. 1. Porosity factor for foils and round conductors.

Fig. 2. Plot of ac resistance versus� and number of layersp.

Fig. 3. Pulsed current waveform and its derivative.

value. Furthermore Fourier coefficients are only available for a
few waveforms.

TABLE I
VALIDATION RESULTS, p = 6, D = 0:4,

t =T = 4%

This paper presents a new formula for ac resistance and the
optimum layer thickness for any current waveform. The formula
only requires knowledge of the rms value of the current wave-
form and the rms value of its derivative. Both these quantities
can be easily measured or calculated with simulation programs
such as PSPICE. The results are just as accurate as the cumber-
some method based on Fourier analysis.

II. AC RESISTANCE

The solution of the diffusion equation for cylindrical wind-
ings is detailed in the Appendix. The asymptotic expansion of
the Bessel functions in the solution leads to Dowell’s formula
for the ac resistance of a coil withlayers, with sinusoidal ex-
citation. The real part of Dowell’s formula gives the ac to dc
resistance factor:

(1)

where is the ratio of the layer thicknessto the skin depth
. This is a very good approximation to the original cylindrical

solution, particularly if the layer thickness is less than 10% of
the radius of curvature. Windings which consist of round con-
ductors, or foils which do not extend the full winding window,
may be treated as foils with equivalent thicknessand effective
conductivity . This calculation is shown graphically
in Fig. 1, a detailed treatment of wire conductors is given by
Ferreira [13] and Jongsma [14]. The orthogonality of skin and
proximity effects in wire windings is described by Ferreira [13].

The trigonometric and hyperbolic functions in (1) may be rep-
resented by the series expansions

(2)

(3)

If only terms up to the order of are used, the relative error
incurred in (2) is less than 1.2% for and the relative
error in (3) is less than 4.1% for and is less than 8.4%
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TABLE II
FORMULAS FOR THEOPTIMUM THICKNESS OF AWINDING FOR VARIOUS WAVEFORMS, 	 = (5p � 1)=15, p= NO. OF LAYERS, sinc(x) = sin(x)=x

if . The asymptotic values of the functions on the left
hand side of (2) and (3) are 1 for . Terms up to the
order of are sufficiently accurate to account for the Fourier
harmonics which are used to predict the optimum value of
which is normally in the range 0.3–1.

Thus (1) becomes

(4)

where

(5)

An arbitrary periodic current waveform, may be represented
by its Fourier series

(6)
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The sine and cosine terms may be combined to give an alterna-
tive form

(7)

where is the dc value of and is the amplitude of the
th harmonic with corresponding phase. The rms value of

the th harmonic is .
The total power loss due to all the harmonics is

(8)

where is the ac resistance factor at theth harmonic fre-
quency, which may be found from (1)

(9)

is the ac resistance due to so that ,
being the rms value of . Thus the ratio of effective ac

resistance to dc resistance is

(10)

The skin depth at theth harmonic is and, from
(4), the ac resistance factor at theth harmonic frequency is

(11)

Substituting (11) into (10) yields

(12)

The rms value of the current in terms of its harmonics is

(13)

The derivative of in (7) is

(14)

and the rms value of the derivative of the current is [15]

(15)

which, upon substitution into (12) using (13), yields

(16)

This is a straightforward expression for the effective resistance
of a winding with an arbitrary current waveform and it may be
evaluated without knowledge of the Fourier coefficients of the
waveform.

III. T HE OPTIMUM CONDITIONS

There is an optimum value of, which gives a minimum value
of effective ac resistance. Define as the dc resistance of a foil
of thickness such that

(17)

which implies that

(18)

Evidently, a plot of versus has the same shape as a
plot of versus at a given frequency. A 3-D plot of
versus with , the number of layers in the winding, on the
third axis is shown in Fig. 2.

For each value of there is an optimum value of where the
ac resistance of the winding is minimum. These optimum points
lie on the line marked minima in Fig. 2 and the corresponding
value of the optimum layer thickness is

(19)

From (18), using (16)

(20)

The optimum value of is found by taking the derivative of
(20) and setting it to zero

(21)

The optimum value of is

(22)

Substituting this result into (16) yields the optimum value of the
effective ac resistance with an arbitrary periodic current wave-
form:

(23)

Jongsma [14] and Snelling [16] have already established this
result for sinusoidal excitation. The corresponding value for
wire conductors with sinusoidal excitation is 3/2 [14], [16].

We may also write (16) in term of

(24)

We now have a set of simple formulas with which to find the
optimum value of the foil or layer thickness of a winding and
its effective ac resistance, these formulas are based on the rms
value of the current waveform and the rms value of its derivative.

IV. V ALIDATION

Consider the pulsed current waveform in Fig. 3 along with its
derivative, which is typical of a forward converter.

This waveform has a Fourier series:

(25)
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The rms value of and the the rms value of its derivative
are

(26)

The optimum value of given by the Fourier series (25) along
with (9), (10), and (18), for and % is 0.418 and
the value given by the proposed formula (22) is 0.387 which
represents an error of 7.4%.

Waveform 5 in Table II is an approximation to the pulse in
Fig. 3 and the optimum value of using Fourier analysis is
0.448 which represents an error of 7.2% when compared to the
Fourier analysis of the waveform given by (25). Evidently wave-
forms with known Fourier series are often approximations to
the actual waveform and can give rise to errors which are of the
same order as the new formula, which is simpler to evaluate.

At 50 kHz the skin depth in copper is 0.295 mm. With
, mm.

The new formula may be validated by comparing the value
of obtained with (22) and the value obtained with Fourier
analysis by plotting , using (18) along with (9) and (10),
over a range of values of and finding the optimum value.
The results are shown in Table I for the waveforms in Table II.
In general the agreement is within 3%, with the exception of
waveform 5 where the error is 6.5%. For the Fourier analysis
19 harmonics were evaluated and was calculated for
20 values of . This means that (9) was computed 380 times
for each waveform in order to find the optimum layer thickness,
(22) was computed once for the same result. For 1–3 layers the
accuracy of the proposed formula is not very good, however, as
evidenced by Fig. 2, the plot of is almost flat in the
region of the optimum value of , and therefore the error in the
ac resistance is negligible.

V. CONCLUSIONS

A new formula has been presented to find the optimum foil or
layer thickness in a multilayer winding. The formula applies to
any arbitrary periodic current waveform. It is computationally
easier to use than Fourier analysis while enjoying the same level
of accuracy. It has a wider range of application than the Fourier
approach by virtue of its simplicity.

APPENDIX

AC RESISTANCE IN A CYLINDRICAL CONDUCTOR

For a magnetoquasistatic system, Maxwell’s equations in a
linear homogeneous isotropic medium take the following form:

(A1)

(A2)

The annular cylindrical conducting layer, shown in Fig. 4 carries
a sinusoidal current . The conductivity of the
conducting medium is and the physical dimensions are shown
in Fig. 4. and are the magnetic fields parallel to the

inside and outside surfaces of the cylinder, respectively. We shall
see shortly that and are independent of.

Assuming cylindrical symmetry, the various components of
the electric field intensity and the magnetic field intensity
inside the cylinder, in cylindrical coordinates ( ), satisfy
the following identities:

(A3)

(A4)

The two Maxwell’s equations above then reduce to

(A5)

(A6)

Since has only a -component and has only a -com-
ponent, we drop the subscripts without ambiguity. Furthermore,
the electric and magnetic field intensities are divergence-free
and so it follows that and are functions of only. Substi-
tuting the expression for given by (A5) into (A6) then yields
the ordinary differential equation

(A7)

This is amodified Bessel’s equation. The general solution is

(A8)

where and are modified Bessel functions of the first
and second kind, of order 0, and , so that the
argument of and is complex. We take the principal
value of the square root, that is . The coefficients

and are determined from the boundary conditions and
will be complex. It is worth noting that the solutions of (A7)
are in fact combinations of the Kelvin functions with real
argumentviz. , ,
and , though in our analysis we find it more
convenient to use the modified Bessel functions with complex
argument.

A typical transformer cross-section is shown in Fig. 5(a) with
associated M.M.F. diagram and current density distribution for a
two-turn primary and a three-turn secondary winding. The phys-
ical dimensions of a generalizedth layer are shown in Fig. 5(b)
(the innermost layer is counted as layer 1). We assume that the
magnetic material in the core is ideal ( , ) so that
the magnetic field intensity goes to zero inside the core. We also
assume that the dimensionis much greater than the radial di-
mensions so that end effects are taken as negligible.

Invoking Ampere’s law for the closed loops and in a
high permeability core ( ):

(A9)

where is the number of turns in layer, each carrying con-
stant current . here refers to the layer number and should not
be confused with the harmonic numberas used in the body of
the paper. Applying the inner and outer boundary conditions for
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Fig. 4. Conducting cylinder.

layer , i.e., and to the
general solution (A8) we obtain the coefficients

(A10)

(A11)

The corresponding value of is found from (A5), that is

(A12)

Using the modified Bessel function identities

(A13)

(A14)

the electric field intensity is then given by

(A15)

The Poynting vector [17] represents the energy flux
density per unit area crossing the surface per unit time. In the
cylindrical coordinate system illustrated in Fig. 4, the power
per unit area into the cylinder is given by on the inside
surface and on the outside surface. Sinceand are
orthogonal, the magnitude of the Poynting vector is simply the
product and its direction is radially outwards.

The power per unit length (around the core) of the inside sur-
face of layer is

(A16)

and are given by (A10) and (A11), respectively, is given
by (A9) so

(A17)

where we define

(A18)

In a similar fashion, we find the power per unit length (around
the core) of the outside surface of layeris

(A19)

The minus sign is required to find the power into the outer sur-
face.

We now assume that and use the leading terms in the
asymptotic approximations for the modified Bessel functions in
(A17) and (A19) [noting for purposes of validity

]:

(A20)

Substituting these into (A17) and (A19) and rearranging, yields
the total power dissipation for layeras

(A21)

where is the thickness of layer. This result
was obtained from the Poynting vector for the complex field in-
tensities, so the real part represents the actual power dissipation.

We now assume that each layer has constant thickness, so
that (independent of ). Furthermore we assume that

. Then using the Taylor expansion

(A22)

it follows that if %, the error incurred by approxi-
mating the sum of the square roots in (A21) by 2 is in the order
of 0.1%. Then the total power dissipation in layerbecomes

(A23)

The dc power per unit length of layeris

(A24)
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Fig. 5. (a) Transformer cross-section with associated MMF diagram and current density at high frequency and (b) generalizednth layer.

The ac resistance factor is the ratio of the ac resistance to the dc
resistance

(A25)

Finally the general result for layers is

(A26)

From the definition of

(A27)

where and is the skin depth. The ac resistance
factor for layers is then

(A28)

This is Dowell’s formula.
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