5 Impact of pig slurry amendments on phosphorus,

6 suspended sediment and metal losses in laboratory runoff

7 boxes under simulated rainfall

8

9 C.J. O'	Flvnn ^a .	O. Fenton ^b	P. Wils	on ^{c,d} . M.G.	. Healv ^{a*}
-----------	----------------------	------------------------	---------	--------------------------	-----------------------

10

¹¹ ^aCivil Engineering, National University of Ireland, Galway, Co. Galway, Ireland.

- 12 ^bTeagase, Environmental Research Centre, Johnstown Castle, Co Wexford, Ireland
- 13 ^cSchool of Mathematics and Statistics, University of St. Andrews, Fife, Scotland
- ^d School of Mathematics, Statistics and Applied Mathematics, National University of Ireland,
- 15 Galway, Co. Galway, Ireland.
- 16
- 17 *Corresponding author. Tel: +353 91 495364; fax: +353 91 494507. E-mail address:

18 mark.healy@nuigalway.ie

19

20 Abstract

21

22 Losses of phosphorus (P) when pig slurry applications to land are followed by a rainfall event

23 or losses from soils with high P contents can contribute to eutrophication of receiving waters.

- 24 The addition of amendments to pig slurry spread on high P Index soils may reduce P and
- 25 suspended sediment (SS) losses. This hypothesis was tested at laboratory-scale using runoff

26	boxes under simulated rainfall conditions. Intact grassed soil samples, 100 cm-long, 22.5 cm-
27	wide and 5 cm-deep, were placed in runoff boxes and pig slurry or amended pig slurry was
28	applied to the soil surface. The amendments examined were: (1) commercial grade liquid
29	alum (8% Al ₂ O ₃) applied at a rate of 0.88:1 [Al: total phosphorus (TP)] (2) commercial-grade
30	liquid ferric chloride (38% FeCl ₃) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-
31	grade liquid poly-aluminium chloride (PAC) (10 % Al ₂ O ₃) applied at a rate of 0.72:1 [Al:TP].
32	The grassed soil was then subjected to three rainfall events $(10.3\pm0.15 \text{ mm h}^{-1})$ at time
33	intervals of 48, 72, and 96 h following slurry application. Each sod received rainfall on 3
34	occasions. Results across three rainfall events showed that for the control treatment, the
35	average flow weighted mean concentration (FWMC) of TP was 0.61 mg L ⁻¹ , of which 31%
36	was particulate phosphorus (PP), and the average FWMC of SS was 38.1 mg L^{-1} . For the
37	slurry treatment, there was an average FWMC of 2.2 mg TP L ⁻¹ , 47% of which was PP, and
38	the average FWMC of SS was 71.5 mg L ⁻¹ . Ranked in order of effectiveness from best to
39	worst, PAC reduced the average FWMC of TP to 0.64 mg L^{-1} (42% PP), FeCl ₃ reduced TP to
40	0.91 mg L^{-1} (52% PP) and alum reduced TP to 1.08 mg L^{-1} (56% PP). The amendments were
41	in the same order when ranked for effectiveness at reducing SS: PAC (74%), FeCl ₃ (66%) and
42	alum (39%). Total phosphorus levels in runoff plots receiving amended slurry remained
43	above those from soil only, indicating that, although incidental losses could be mitigated by
44	chemical amendment, chronic losses from the high P index soil in the current study could not
45	be reduced.
46	
47	Keywords: pig slurry, amendments, runoff, phosphorus, suspended sediment, metals
48	
49	1. Introduction

51	The European Union Water Framework Directive (WFD) (European Commission (EC),
52	2000) aims to achieve 'at least' good ecological status for all water bodies in all member
53	states by 2015 with the implementation of Programmes of Measures (POM) by 2012. Taking
54	Ireland as an example, The European Communities (Good Agricultural Practice for
55	Protection of Waters) Regulations 2010 (hereafter referred to as statutory instrument (S.I.)
56	No. 610 of 2010) is Ireland's POM, which satisfies both the WFD and the Nitrates Directive
57	(European Economic Community (EEC), 1991). The Nitrates Directive promotes the use of
58	good farming practices to protect water quality across Europe by implementing measures to
59	prevent nitrates from agricultural sources polluting a water body. S.I. No. 610 of 2010
60	imposes a limit on the amount of livestock manure that can be applied to land. As part of this,
61	the maximum amount of livestock manure that may be spread on land, together with manure
62	deposited by the livestock, cannot exceed 170 kg of nitrogen (N) and 49 kg phosphorus (P)
63	ha ⁻¹ year ⁻¹ . This limit is dependent on grassland stocking rate and soil test P (STP). Presently,
64	these limits may only be exceeded: (1) when spreading spent mushroom compost, poultry
65	manure, or pig slurry (2) if the size of a holding has not increased since 1 st August 2006 and
66	(3) if the N application limit is not exceeded (S.I. No. 610 of 2010). The amount by which
67	these limits can be exceeded will be reduced gradually to zero by 1 st January, 2017 (Table 1).
68	This will have the effect of reducing the amount of land available for the application of pig
69	slurry and may lead to the need for pig export, which itself becomes energetically
70	questionable at distances over 50 km (Feally and Schroder, 2008). These new regulations will
71	have an impact on the pig industry, in particular, as it is focused in relatively small areas of
72	Ireland.
73	

At present, pig slurry in Ireland is almost entirely landspread (B. Lynch, pers. comm.). The
application of slurry in excess of crop requirements can give rise to elevated STP

76	concentrations, which may take years-to-decades to be reduced to agronomically optimum
77	levels (Schulte et al., 2010). Typically, fields neighbouring farm yards have highest soil P
78	index as they receive preferential organic fertilizer application (Wall et al., 2011). Soil P
79	Index categories of 1 (deficient) to 4 (excessive) are used to classify STP concentrations in
80	Ireland (Schulte et al., 2010). The soil P Index is based on the Morgan's extraction, with a
81	STP of > 8mg L^{-1} classified as P index 4 (S.I. No. 610 of 2010). Soils at soil P Index 4 show
82	no agronomic response to P applications and have a higher risk of P loss in runoff (Tunney,
83	2000). Phosphorus losses from such a high P Index soil have the potential to become
84	exported along the nutrient transfer continuum within a catchment, and may adversely affect
85	water quality (Wall et al., 2011).
86	
87	Pig farming in Ireland is concentrated in a small number of counties, with 52% of the
88	national sow herd located in counties Cavan, Cork and Tipperary (Anon, 2008). At 3.5 ha per
89	sow, the density of pig farming in County Cavan is the densest in the country (Anon, 2008).
90	Due to the high concentrations of pig farming in certain areas, the constant application of pig
91	slurry results in the local land becoming high in STP, which leads to an increased long-term
92	danger of P losses (which are known as chronic losses). In addition, due to regulations such
93	as S.I. No. 610 of 2010, the amount of slurry that may be spread on these lands will be
94	reduced, which will lead to a shortage of locally available land on which to spread slurry.
95	
96	Alternative treatment methods for Irish pig slurry, such as constructed wetlands (CWs),
97	composting and anaerobic digestion (AD), were investigated by Nolan et al. (2012), but
98	landspreading was found to be the most cost effective treatment option. Land being used for
99	other farming practices, such as tillage, which may have a lower STP and would be more

100	suitable for the landspreading of slurry, is still often so far removed from the slurry source as
101	to make transportation of slurry to those locations extremely costly (Nolan et al., 2012).
102	
103	A possible novel alternative, unexplored by Nolan et al. (2012), is the chemical amendment
104	of pig slurry. Based on a laboratory scale experiment, O'Flynn et al. (2012) suggested that
105	chemical amendment of pig slurry should be explored further, with flow dimensions added,
106	to examine nutrient speciation losses in runoff on a high P Index soil.
107	
108	Alum, aluminium chloride (AlCl ₃), lime and ferric chloride are commonly used as coagulants
109	in slurry and wastewater separation operations. Smith et al. (2004) found in a field-based
110	study that AlCl ₃ , added at 0.75% of final slurry volume to slurry from pigs on a phytase-
111	amended diet, could reduce slurry dissolved reactive P (DRP) by 84% and runoff DRP by
112	73%. In a field study, Smith et al. (2001) found that alum and AlCl ₃ , added at a
113	stoichiometric ratio of 0.5:1 Al: total phosphorus (TP) to pig slurry, achieved reductions of
114	33% and 45%, respectively, in runoff water, and reductions of 84% in runoff water when
115	adding both alum and AlCl ₃ at 1:1 Al:TP. In an incubation study, Dou et al. (2003) found that
116	technical-grade alum, added to pig slurry at 0.25 kg kg ⁻¹ of slurry dry matter (DM), and flue
117	gas desulpherisation by-product (FGD), added at 0.15 kg kg ⁻¹ , each reduced DRP by 80%.
118	Dao (1999) amended stockpiled cattle manure with caliche, alum and flyash in an incubation
119	experiment, and reported water extractable P (WEP) reductions in amended manure,
120	compared to the study control, of 21, 60 and 85%, respectively.
121	
122	O' Flynn et al. (2012) examined the effectiveness and feasibility of six different amendments,
123	added to pig slurry, at reducing DRP concentration in overlying water in an experiment

124 which attempted to simulate a contact mechanism between slurry and soil. Slurry and

125 amended slurry was applied to intact 100-mm-diameter soil cores, positioned in glass 126 beakers. The slurry was left for 24 h and the soil was gently saturated over a further 24 h. 500 127 mL of water was then added to the beaker. A rectangular paddle, positioned at mid-height in 128 the overlying water, was set to rotate at 20 rpm for 30 h to simulate overland flow, and water 129 samples were taken over the duration of the study and tested for DRP. The effectiveness of 130 the amendments at reducing DRP in overlying water were (in decreasing order): alum (86%), 131 FGD (74 %), poly-aluminium chloride (PAC) (73%), ferric chloride (71 %), flyash (58%) 132 and lime (54%). Ranked in terms of feasibility, which took into account effectiveness, cost 133 and other potential impediments to use, they were: alum, ferric chloride, PAC, flyash, lime 134 and FGD.

135

136 However, whilst allowing comparison between different amendments at reducing P in 137 overlying water, the agitator test did not simulate surface runoff of nutrients under conditions 138 which attempted to replicate on-farm scenarios. In the present study, a laboratory runoff box 139 study was chosen over a field study as it was less expensive and conditions such as surface 140 slope, soil conditions, and rainfall intensity can be standardized for testing. The expensive 141 nature of field experiments and inherent variability in natural rainfall has made rainfall 142 simulators a widely used tool in P transport research (Hart et al., 2004). The runoff-box 143 experiment was sufficient to compare treatments and no effort was made to extrapolate field-144 scale coefficients using this experiment. Unlike previous studies, which used a much higher 145 rainfall intensity of 50 mm h⁻¹ (Smith et al., 2001; Smith et al., 2004), the present study 146 examined surface runoff of nutrients under a calibrated rainfall intensity of 10.3±0.15 mm h⁻ 147 ¹, which has a much shorter return period and is more common in North Western Europe. It is 148 also high enough so as to produce runoff in a reasonable period of time. The present study

provides the first comparison of the effects on runoff concentrations and loads following theaddition of amendments to Irish pig slurry.

152	The aim of this laboratory study was to investigate P and suspended sediment (SS) losses
153	during three consecutive simulated rainfall events and to:
154	1) elucidate if amendment of pig slurry can control incidental (losses which take place
155	when a rainfall event occurs shortly after slurry application and before slurry infiltrates
156	into the soil) and chronic P losses over time to below that of the soil control, and
157	2) compare how amendment of pig slurry affects P speciation and metal losses in runoff
158	when compared with control and slurry only treatments.
159	
160	2. Materials and Methods
161	
162	2.1. Slurry collection and characterisation
163	
164	Pig slurry was taken from an integrated pig unit in Teagasc Research Centre, Moorepark,
165	Fermoy, Co. Cork in March 2011. The sampling point was a valve on an outflow pipe
166	between two holding tanks, which were sequentially placed after a holding tank under the
167	slats. To ensure a representative sample, this valve was turned on and left to run for a few
168	minutes before taking a sample. The slurry was stored in a 25-L drum inside a fridge at 4°C
169	prior to testing. The TP and total nitrogen (TN) were determined using persulfate digestion.
170	Ammonium-N (NH4-N) was determined by adding 50 mL of slurry to 1L of 0.1M HCl,
171	shaking for 30 min at 200 rpm, filtering through No. 2 Whatman filter paper, and analysing
172	using a nutrient analyser (Konelab 20, Thermo Clinical Labsystems, Finland), Slurry pH was

by drying at 105°C for 24 h. The physical and chemical characteristics of the pig slurry used
in this experiment and characteristic values of pig slurry from other farms in Ireland are
presented in Table 2.

177

178 **2.2. Soil collection and analysis**

179

180 120-cm long, 30-cm wide, 10-cm deep intact grassed soil samples (n=15) were collected 181 from a local dry stock farm in Galway, Republic of Ireland. Soil samples (n=3) – taken from 182 the upper 100 mm from the same location - were air dried at 40 °C for 72 h, crushed to pass a 183 2 mm sieve and analysed for Morgan's P (the national test used for the determination of plant 184 available P in Ireland) using Morgan's extracting solution (Morgan, 1941). Soil pH (n=3) was 185 determined using a pH probe and a 2:1 ratio of deionised water-to-soil. The particle size 186 distribution was determined using a sieving and pipette method (British Standard (B.S.) 187 1377-2; BSI, 1990a) and the organic content of the soil was determined using the loss on 188 ignition (LOI) test (B.S.1377-3; BSI, 1990b). The soil used was a poorly-drained, sandy loam 189 textured topsoil (58% sand, 27% silt, 15% clay) with a STP of 16.72 \pm 3.58 mg L⁻¹ (making it 190 a P index 4 soil according to S.I. No. 610 of 2010, on which P may not be spread, except in those circumstances mentioned in Table 1), total potassium (TK) of 127.39±14.94 mg L⁻¹, a 191 192 pH of 7.65±0.06 and an organic matter content of 13±0.1%. 193 194 2.3. Slurry amendment 195

196 The results of a laboratory micro-scale study by O' Flynn et al. (2012) were used to select

amendments and their application rates to be used in the present study. The amendments,

198 which were applied on a stoichiometric basis, were: (1) commercial grade liquid alum (8%

199 Al₂O₃) applied at a rate of 0.88:1 [Al:TP]; (2) commercial-grade liquid ferric chloride (38% 200 FeCl₃) applied at a rate of 0.89:1 [Fe:TP]; and (3) commercial-grade liquid poly-aluminium 201 chloride (PAC) (10 % Al₂O₃) applied at a rate of 0.72:1 [Al:TP]. The other amendments used 202 in the O' Flynn et al. (2012) study (FGD, flyash and lime) were unexamined in the present 203 study on the basis of effectiveness and feasibility. The amendments were added to the slurry 204 in a 2-L plastic container, mixed for 10 s, and then applied evenly to the grassed sods. The 205 compositions of the amendments used are shown in Table 3.

206

- 207 **2.4. Rainfall simulation study**
- 208

209 100 cm-long, 22.5 cm-wide and 7.5 cm-deep laboratory runoff boxes, with side-walls 2.5 cm 210 higher than the grassed sods, were used in this experiment. The runoff boxes were positioned 211 under a rainfall simulator. The rainfall simulator consisted of a single 1/4HH-SS14SQW 212 nozzle (Spraying Systems Co., Wheaton, IL) attached to a 4.5-m-high metal frame, and calibrated to achieve an intensity of 10.3±0.15 mm h⁻¹ and a droplet impact energy of 260 kJ 213 mm⁻¹ ha⁻¹ at 85 % uniformity after Regan et al. (2010). The source for the water used in the 214 rainfall simulations had a DRP concentration of less than 0.005 mg L⁻¹, a pH of 7.7±0.2 and 215 an electrical conductivity (EC) of 0.435 dS m⁻¹. Each runoff box had 5-mm-diameter 216 217 drainage holes located at 300-mm-centres in the base, after Regan et al. (2010). Muslin cloth 218 was placed at the base of each runoff box before packing the sods to prevent soil loss. 219 Immediately prior to the start of each experiment, the sods were trimmed and packed in the 220 runoff boxes. The packed sods were then saturated using a rotating disc, variable-intensity 221 rainfall simulator (after Williams et al., 1997), and left to drain for 24 h by opening the 5-222 mm-diameter drainage holes before continuing with the experiment. At this point (t = 24 h), 223 when the soil was at approximately field capacity, slurry and amended slurry were spread on

224	the packed sods and the drainage holes were sealed. They remained sealed for the duration of
225	the experiment. They were then left for 48 h in accordance with S.I. No. 610 of 2010. At $t =$
226	72 h, 96 h and 120 h (Rainfall Event (RE) 1, RE 2 and RE 3), rainfall was applied (to the
227	same sods), and each event lasted for a duration of 30 min after runoff began. Surface runoff
228	samples for each event were collected in 5-min intervals over this 30-min period. The
229	laboratory runoff box experiment was sufficient to compare treatments and no effort was
230	made to extrapolate field-scale coefficients using this experiment.
231	
232	2.5. Runoff collection and analysis
233	
234	The following treatments were examined in triplicate $(n=3)$ within 21 d of sample collection:
235	(1) a grassed sod-only treatment with no slurry applied (2) a grassed sod with unamended
236	slurry (the slurry control) applied at a rate of 19 kg TP ha ⁻¹ , and (3) grassed sods receiving
237	amended slurry applied at a rate of 19 kg TP ha ⁻¹ .
238	
239	After each 5-min interval, runoff water samples were tested for pH. A subsample was passed
240	through a $0.45 \mu m$ filter and analysed colorimetrically for DRP using a nutrient analyser
241	(Konelab 20, Thermo Clinical Labsystems, Finland). Filtered (passed through a $0.45 \mu m$
242	filter) and unfiltered subsamples, collected at 10, 20 and 30 min after runoff began, were
243	tested for total dissolved phosphorus (TDP) and TP using acid persulfate digestion.
244	Particulate phosphorus was calculated by subtracting TDP from TP. Dissolved un-reactive
245	phosphorus was calculated by subtracting DRP from TDP. Suspended sediment was tested by
246	vacuum filtration of a well-mixed (previously unfiltered) subsample through Whatman GF/C
247	(pore size: 1.2 μm) filter paper. As the amendments used contain metals, namely Al and Fe,
248	filtered subsamples collected at 10, 20 and 30 min after runoff began, were analysed using an

249	ICP (inductively coupled plasma) VISTA-MPX (Varian, California). The limit of detection
250	was 0.01 mg L^{-1} .

252 **2.6. Statistical analysis**

253

074	TT1 ·	• ,	1 1	11	• •	•	C /1		· · ·	CDDD
154	I his es	neriment	analysed	the	nairwise	comparisons	of the	mean	concentrations	OT DRP
201	11115 02	sperment.	unury see	i uno	pull wise	comparisons	or the	moun	concentrations	or Dru,

255 DUP, TDP, PP, TP, SS, Al and Fe in the runoff when slurry only (slurry control), no slurry,

and slurry that was treated with alum, PAC and FeCl₃, was applied. The significances of the

257 pairwise comparisons were based upon the results of an analysis of the data by a multivariate

linear model in SPSS 19 (IBM, 2011). Covariance structures and interactions were

investigated, but found not to be of significance with respect to the pairwise comparisons.

260 Probability values of p>0.05 were deemed not to be significant.

261

262 **3. Results and Discussion**

263

264 **3.1. Phosphorus in runoff**

265

266 The vast majority of the Irish landscape has rolling topography and is highly dissected with

surface water or drainage systems. The present laboratory experiment mimics a field

268 neighboring such a landscape. The high drainage density, high annual rainfall and low annual

269 potential evapotranspiration (20–50% of rainfall) facilitates the hydrological pathways for

transfers of P (Wall et al., 2011). However, the losses from the runoff boxes in the present

study may be buffered further before reaching this export continuum.

272

273	The flow weighted mean concentrations (FWMC) of P in runoff from the soil-only treatment
274	were constant for all REs, with TP and TDP decreasing from 0.62 and 0.42 mg L^{-1}
275	(corresponding to loads of 3.6 and 2.5 mg m ⁻²), respectively, during RE 1 to 0.60 and 0.41
276	mg L^{-1} (3.4 and 2.3 mg m ⁻²) during RE 3 (Fig. 1). These concentrations of TP were above
277	0.03 mg P L^{-1} , the median phosphate level above which significant deterioration in water
278	quality may be seen in rivers (Clabby et al., 2008). These high losses were as expected as the
279	soil used was a P index 4 soil, which carries the risk of increased P loss in runoff (Tunney,
280	2000) and may not normally have P spread on it (S.I. No. 610 of 2010). Although the
281	buffering capacity of water ensures that the concentration of the water in a stream or lake will
282	not be as high as the concentration of runoff, chronic losses of P are a major issue in water
283	quality.

285 Phosphorus losses of all types increased with slurry application (Fig. 1). The FWMC of DRP for the runoff from the slurry control, averaged over the three rainfall events, was 0.89 mg L⁻¹ 286 (4.47 mg m^{-2}) , which was significantly different to, and over twice as high as the soil-only 287 288 treatment (p=0.00) (Table 4). Although the concentration of TDP in runoff from the slurry 289 control decreased slightly during each event (Fig. 1), the TDP fraction of TP increased from 290 45% during RE1 to 55% during RE2, and 66% during RE3. This was due to the level of PP in 291 runoff reducing, albeit not significantly (p>0.05), between each event. A similar trend was 292 replicated across all amended slurry treatments. As PP is generally bound to the minerals 293 (particularly Fe, Al, and Ca) and organic compounds contained in soil, and constitutes a long-294 term P reserve of low bioavailability (Regan et al., 2010), it may provide a variable, but long-295 term, source of P in lakes as it is associated with sediment and organic material in agricultural runoff (Sharpley et al., 1992). The average FWMC of 0.89 mg DRP L⁻¹ (4.47 mg m⁻²) from 296 297 the slurry control was consistent with the results of Smith et al. (2001), who obtained DRP

concentrations of 5.5 mg L⁻¹ in surface runoff following slurry application to grassland at
44.9 kg TP ha⁻¹ and subjected to a rainfall intensity of 50 mm h⁻¹, 1 day after application.

301	Poly-aluminium chloride was the best performing amendment, and significantly reduced all P
302	to concentrations not significantly different (p>0.05) to soil-only. Across all treatments, no
303	form of P changed significantly between REs (p>0.05). Within each treatment and each
304	event, there were certain variances between replications expressed as standard deviations
305	from the average. These may be attributable to the inherent variability within soils and slurry,
306	such as differing chemical and physical properties, from two very non-homogeneous
307	materials.
308	
309	The amendments used in this study all significantly reduced DRP, DUP, TDP, PP and TP
310	concentrations in the runoff water compared to the slurry control, but resulted in DRP
311	concentrations which were not significantly different (p>0.05) to the soil-only treatment. No
312	statistical relationship was found between the runoff P concentrations and pH, or volume of
313	runoff water measured during each test. Dissolved un-reactive phosphorus concentrations
314	from all amendments were not significantly different to each other (p>0.05) and were
315	significantly higher than the soil-only, but lower than the slurry control. Similarly, the
316	addition of amendments reduced the PP, TP and TDP losses below the slurry control (Table
317	4); however, they were still higher than the soil-only. This indicates that even after chemical
318	amendment, slurry spread on high STP soil still poses an environmental danger. This is
319	because chemical amendment of slurry will only affect the contribution of the slurry to runoff
320	P, but will not affect the contribution of the soil itself which, for high STP soils, may still
321	pose the danger of chronic P losses.

323	The average FWMC of DRP and TDP in runoff from the amended slurry treatments were
324	approximately half than in the runoff from the slurry control. This may be due to the
325	amendments reducing the DRP of the slurry itself, similar to what Smith et al. (2001)
326	experienced. Smith et al. (2001) added alum and AlCl ₃ , each at 0.5:1 and 1:1 Al:TP, to pig
327	slurry. Each reduced DRP in pig slurry by roughly 77% at 0.5:1 and 99% at 1:1. At the low
328	rate of application (0.5:1), DRP in runoff water was reduced by 33 and 45% when adding
329	alum and AlCl ₃ , respectively. At the high rate of application (1:1), each amendment reduced
330	runoff DRP by 84%. These were similar to the results obtained from the present study, which
331	ranged from 63% for alum added at 0.88:1 Al:TP to 71% for PAC added at 0.72:1 (Table 4).
332	
333	3.2. Suspended sediment, metals and pH in runoff
334	
335	The SS concentration in runoff reduced during each RE, apart from the soil-only treatment,
336	which was more constant. The amendments all reduced the SS concentration to below that of
337	the slurry control (Fig. 2) and, in the case of FeCl ₃ and PAC, the average FWMC was below
338	35 mg L^{-1} , the treatment standard necessary for discharge to receiving waters (S.I. No 419 of
339	1994). However, the concentration of SS in the soil-only treatment and the slurry control
340	were highly variable. The SS concentrations in runoff were not significantly different
341	between treatments, apart from PAC, which was significantly different to the slurry control
342	(p=0.024).
343	
344	The order of effectiveness of removal was the same as for P, i.e. from best to worst, they are:
345	PAC, FeCl ₃ and alum. The removals of SS for alum (39 %), FeCl ₃ (66 %) and PAC (74 %)
346	were not as high as those reported by Brennan et al. (2011), who reported SS removals of
347	88%, 65% and 83% in runoff when adding alum, $FeCl_3$ and PAC, respectively, to dairy cattle

slurry. However, the DM of the dairy cattle slurry used by Brennan et al. (2011) was 10.5%,
compared to 3.41% in this study, and all treatments resulted in average FWMCs well above
the slurry only treatment of the present study.

351

352 Figure 3 shows the average FWMCs of Al and Fe in runoff water. As expected, alum and 353 PAC resulted in increased levels of Al, with Al levels in runoff from alum significantly 354 different to all other treatments (p<0.05). This agrees with Edwards et al. (1999), who 355 reported increased levels of Al in runoff water from alum-amended horse manure and 356 municipal sludge, compared to the slurry control, in a plot study. Edwards et al. (1999) added 357 alum at 10% by dry manure and dry sludge mass. Horse manure and municipal sludge were spread at 9.3 and 7.8 Mg ha⁻¹, respectively, with rainfall applied within 1 h of application at 358 64 mm h⁻¹ for 30 min after runoff began. The FWMC of Al in runoff increased from 1.22 359 and 0.61 mg L⁻¹ from unamended horse manure and municipal sludge, respectively, to 1.80 360 and 1.01 mg L⁻¹ for alum-amended horse manure and municipal sludge. In the present study, 361 362 Al from PAC was significantly lower than from alum (p=0.00), significantly higher than from FeCl₃ (p=0.036), but not significantly different to the soil-only or slurry control (p>0.05). 363 364 FeCl₃ resulted in increased levels of Fe, significantly different (p<0.05) to all other 365 treatments. Alum reduced Fe levels in runoff compared to the slurry control. This result was 366 in agreement with Moore et al. (1998) and Edwards et al. (1999). Moore et al. (1998) added 367 alum at 10% by weight in a plot study to poultry litter, which was spread at varying land 368 application rates up to 8.98 Mg ha⁻¹. Rainfall was applied immediately after slurry application (RE1), and 7 days later (RE2) at 50 mm h⁻¹ for 27.5 min after runoff began. At the highest 369 land application rate, Fe loads in runoff were reduced from 94.2 and 31.1 g ha⁻¹ from the 370 371 slurry control for RE1 and RE2 to 37.8 and 12.1 g ha⁻¹ from the alum-amended litter. Edwards et al. (1999) reported a FWMC of 0.17 mg Fe L^{-1} in runoff from alum-amended 372

373	horse manure, compared to 0.44 mg L^{-1} from unamended slurry, and 0.10 from soil-only.
374	There are no limits for levels of Al in surface water intended for the abstraction of drinking
375	water, but the concentrations of Fe measured in the runoff were well within the mandatory
376	limit of 0.3 mg L ⁻¹ (EEC, 1975).
377	
378	The effect of amendments on slurry pH is a potential barrier to their implementation as it
379	affects P sorbing ability (Penn et al., 2011) and ammonia (NH ₃) emissions from slurry
380	(Lefcourt and Messinger, 2001). The use of acidifying amendments can lead to an increased
381	release of hydrogen sulphide gas (H ₂ S) from slurry, which is believed to be responsible for
382	human and animal deaths when slurry is agitated on farms. However, the results from this
383	laboratory experiment showed the pH of the runoff water not to be significantly affected by
384	the use of amendments (p>0.05). However, further investigation would need to be undertaken
385	to confirm that pollution swapping (the increase in one pollutant as a result of a measure
386	introduced to reduce another pollutant (Healy et al., 2012)) does not occur.
387	
388	3.3. Outlook for use of amendments as a mitigation measure
389	
390	In this laboratory study, amendments to pig slurry significantly reduced runoff P from runoff
391	boxes compared to the slurry control. However, the DRP concentration in runoff remained at
392	or above the DRP concentration in runoff from soil only, indicating that, although incidental
393	losses can be mitigated by chemical amendment, chronic losses cannot be reduced. Future
394	research must examine the effect of amendments on P loss to runoff at field-scale under real-
395	life conditions with conditions which laboratory testing cannot mimic, such as the presence of
396	drainage, flow dynamics and a watertable. Other research which must also be carried out
397	includes the effect of amendments on leachate, gaseous emissions and plant available P.

399	The use of amendments also incurs the extra cost of purchasing amendments. O' Flynn et al.
400	(2012) estimated that the cost of spreading amended slurry at the stoichiometric rates used in
401	this study would be 3.33, 2.45, and $3.69 \in m^{-3}$ for alum, FeCl ₃ , and PAC, respectively. This
402	would be in comparison to $1.56 \in m^{-3}$ to spread unamended slurry.
403	
404	Increased regulation of pig slurry management will accentuate the problem of chronic P
405	losses. A possible solution, unexamined in the present study, would be to modify the soil with
406	a P sorbing material.
407	
408	4. Conclusions
409	
410	The findings of this study were:
411	1. On the high soil test phosphorus soil tested, phosphorus losses from the grassed soil
412	only were high and were further increased following slurry application. All
413	amendments tested reduced all types of phosphorus losses, but did not reduce them
414	significantly to below that of the soil-only treatment, the average flow-weighted mean
415	concentration of total phosphorus of which was 0.61 mg L^{-1} and which comprised
416	31% as particulate phosphorus. For the slurry control, the average flow weighted
417	mean concentration of the surface runoff was 2.17 mg total phosphorus L^{-1} , 47% of
418	which was particulate phosphorus. In decreasing order of effectiveness at removal of
419	phosphorus, the most successful amendments were: commercial-grade liquid poly-
420	aluminium chloride, which reduced the average flow weighted mean concentration of
421	total phosphorus to 0.64 mg L^{-1} (42% particulate phosphorus); commercial-grade
422	liquid ferric chloride, which reduced total phosphorus to 0.91 mg L ⁻¹ (52% particulate

423		phosphorus); and alum, which reduced total phosphorus to 1.08 mg L^{-1} (56%
424		particulate phosphorus).
425	2.	For each treatment, total phosphorus and total dissolved phosphorus concentrations in
426		runoff decreased after each rainfall event. However, the fraction of total dissolved
427		phosphorus within runoff increased, due to large, although not significant, decreases
428		in particulate phosphorus between events.
429	3.	The amendments all reduced the suspended sediment to below that of the slurry
430		control, and in the case of commercial-grade liquid ferric chloride and commercial-
431		grade liquid poly-aluminium chloride, to below that of the soil only. These two
432		treatments also reduced the average flow weighted mean concentration of suspended
433		sediment to below 35 mg L ⁻¹ , the treatment standard necessary for discharge to
434		receiving waters.
435	4.	Although encouraging, the effectiveness of the amendments trialed in this study
436		should be validated at field scale.
127	Aalan	awladgements
437	ACKII	owiedgements
430	The fi	rst author gratefully acknowledges the award of the EMPAPK scholarship from
439		ET to support this study. The outbors would like to thank Dr. Powmond Promon and
440	Lion	Hopey
441	Liaiii	neniy.
442		
445		
444		
443		
440		
44 /		

450 Anon, 2008. A development strategy for the Irish pig industry, 2008 to 2015. Teagasc, Rep.

- 451 of Ireland. http://www.teagasc.ie/pigs/advisory_services/Strategy_group_report_Final_08.pdf
- 452 (accessed 02/02/2012).

453

- 454 Anon, 2010. Summary of main agreed changes to nitrates regulations. Teagasc, Rep. of
- 455 Ireland. http://www.teagasc.ie/pigs/advisory_services/NitratesRegsChanges_Oct2010.pdf

456 (accessed 02/02/2012).

457

458 Brennan, R.B., Fenton, O., Grant, J., Healy, M.G., 2011. Impact of chemical amendment of

dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a

460 grassland soil. Sci. Total Environ. 409, 5111–5118.

461

462 British Standards Institution, 1990a. British standard methods of test for soils for civil

463 engineering purposes. Determination of particle size distribution. BS 1377. London: BSI.

464

465 British Standards Institution, 1990b. Determination by mass-loss on ignition. British standard

466 methods of test for soils for civil engineering purposes. Chemical and electrochemical

467 tests. BS 1377. London: BSI.

468

- 469 Clabby, K.J., Bradley, C., Craig, M., Daly, D., Lucey, J., O'Boyle, S., O'Donnell, C.,
- 470 McDermott, G., McGarrigle, M., Tierney, D., Wilkes, R., Bowman, J., 2008. Water
- 471 quality in Ireland 2004-2006. EPA, Wexford. http://www.epa.ie/downloads/
- 472 pubs/water/waterqua/waterrep/ (accessed 31.01.12).

- 474 Dao, T.H., 1999. Co-amendments to modify phosphorus extractability and
- 475 nitrogen/phosphorus ration in feedlot manure and composted manure. J. Environ. Qual. 28,
 476 1114–1121.
- 477
- 478 Dou, Z., Zhang, G.Y., Stout, W.L., Toth, J.D., Ferguson J.D., 2003. Efficacy of alum and
- 479 coal combustion by-products in stabilizing manure phosphorus. J. Environ. Qual. 32, 1490–480 1497.
- 481
- 482 EC, 2000. Council Directive of 22 December 2000 establishing a framework for the
- 483 Community action in the field of water policy (2000/60/EC). http://www.wfdireland.ie/
- 484 (accessed 31.01.12).
- 485
- 486 Edwards D.R., Moore P.A., Workman S.R., Bushee E.L., 1999. Runoff of metals from alum-
- 487 treated horse manure and municipal sludge. J. Am. Water Resour. Assoc. 35, 155–165.
- 488
- 489 EEC, 1975. Council Directive of 16 June 1975 concerning the quality required of surface
- 490 water intended for the abstraction of drinking water in the Member States (75/440/EEC)
- 491 http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1975/L/01975L0440-19911223-en.pdf
- 492 (accessed 31.01.2012).
- 493
- 494 EEC, 1991. Council Directive of 12 December 1991 concerning the protection of waters
- 495 against pollution by nitrates from agricultural sources (91/676/EEC)
- 496 http://www.environ.ie/en/Environment/Water/WaterQuality/NitratesDirective/ (accessed
- 497 31.01.2012).

498	
499	Fealy, R., Schroder, J., 2008. Assessment of manure transport distances and their impact on
500	economic and energy costs. International Fertiliser Society Conference, Cambridge, 12
501	December, 2008.
502	
503	Hart, M.R., Quin, B.F., Nguyen M.L., 2004. Phosphorus runoff from agricultural land and
504	direct fertilizer effects. J. Environ. Qual. 33, 1954–1972.
505	
506	Healy, M.G., Ibrahim, T.G., Lanigan, G.J., Serrenho, A.J., Fenton, O., 2012. Nitrate removal
507	rate, efficiency and pollution swapping potential of different organic carbon media in
508	laboratory denitrification bioreactors. Ecol. Eng. 40, 198-209.
509	
510	Lefcourt, A.M., Meisinger, J.J., 2001. Effect of adding alum or zeolite to dairy slurry on
511	ammonia volatilisation and chemical composition. J. Dairy Sci. 84, 1814–1821.
512	
513	McCutcheon, G.A., 1997. MSc Thesis, National University of Ireland, Dublin.
514	
515	Moore, P.A., Daniel, T.C., Gilmour, J.T., Shreve, B.R., Edwards, D.R., Wood, B.H., 1998.
516	Decreasing metal runoff from poultry litter with aluminum sulphate. J. Environ. Qual. 27,
517	92–99.
518	
519	Morgan, M.F., 1941. Chemical soil diagnosis by the universal soil testing system.
520	Connecticut. Connecticut. New Haven: Connecticut agricultural Experimental Station
521	Bulletin 450.
522	

523	Nolan, T., Troy, S.M., Gilkinson, S., Frost, P., Xie, S., Zhan, X., Harrington, C., Healy, M.G.,
524	Lawlor, P.G., 2012. Economic analyses of pig manure treatment options in Ireland. Bioresour.
525	Technol. 105, 15-23.
526	
527	O'Bric, C., 1992. MSc Thesis, National University of Ireland, Dublin 1992.
528	
529	O' Flynn, C.J., Fenton, O., Healy, M.G., 2012. Evaluation of amendments to control
530	phosphorus losses in runoff from pig slurry applications to land. Clean – Soil, Air, Wat. In
531	press. DOI: 10.1002/clen.201100206
532	
533	Penn, C.J., Bryant, R.B., Callahan, M.A., McGrath, J.M., 2011. Use of industrial byproducts
534	to sorb and retain phosphorus. Commun. Soil Sci. Plant Anal. 42, 633-644.
535	
536	Regan, J.T., Rodgers, M., Healy, M.G., Kirwan, L., Fenton, O., 2010. Determining
537	phosphorus and sediment release rates from five Irish tillage soils. J. Environ. Qual. 39, 1-8.
538	
539	Schulte, R.P.O., Melland, A.R., Fenton, O., Herlihy, M., Richards, K.G., Jordan, P., 2010.
540	Modelling soil phosphorus decline: Expectations of Water Frame Work Directive policies.
541	Environ. Sci. Policy. 13, 472-484.
542	
543	Sharpley, A.N., Smith, S.J., Jones, O.R., Berg, W.A., Coleman, G.A., 1992. The transport of
544	bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 21, 30-35.
545	

- 546 S.I. No. 419 of 1994. Environment Protection Agency Act, 1992 (Urban waste water
- treatment regulations, 1994). http://www.irishstatutebook.ie/1994/en/si/0419.html (accessed
 22.12.2011).
- 549
- S.I. No. 610 of 2010. European Communities (good agricultural practice for protection of
 waters) regulations 2010.
- http://www.environ.ie/en/Legislation/Environment/Water/FileDownLoad,25133,en.pdf.
 (accessed 22.12.2011).
- 554
- 555 Smith, D.R., Moore Jr., P.A., Griffis, C.L., Daniel, T.C., Edwards, D.R., Boothe. D.L., 2001.
- 556 Effects of alum and aluminium chloride on phosphorus runoff from swine manure. J.
- 557 Environ. Qual. 30, 992-998.
- 558
- 559 Smith, D.R., Moore Jr., P.A., Maxwell, C.V., Haggard, B.E., Daniel, T.C., 2004. Reducing
- 560 phosphorus runoff from swine manure with dietary phytase and aluminum chloride. J.
- 561 Environ. Qual. 33, 1048-1054.
- 562
- 563 Tunney, H., 2000. Phosphorus needs of grassland soils and loss to water. In: Steenvoorden,
- 564 J., Claessen, F., Willems, J. (Eds.), Agricultural effects on ground and surface waters:
- 565 Research at the edge of science and society. IAHS, Wallingford, England, 273, pp. 63–69
- 566
- 567 Wall, D., Jordan, P., Melland, A.R., Mellander, P.E., Buckley, C., Reaney, S.M., Shortle, G.,
- 568 2011. Using the nutrient transfer continuum concept to evaluate the European Union Nitrates
- 569 Directive National Action Programme. Environ. Sci. Policy. 14, 664-674.
- 570

571	Williams, J.D., Wilkins, D.E., McCool, D.K., Baarstad, L.L., Klepper, B.L. Papendick, R.I.,
572	1997. A new rainfall simulator for use in low-energy rainfall areas. Appl. Eng. Agric. 14,
573	243–247.
574	
575 576 577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	
596	

- 597 Fig. 1. Histogram of flow-weighted mean concentrations (mg L⁻¹) for dissolved reactive
- 598 phosphorus (DRP), dissolved unreactive phosphorus (DUP) and particulate phosphorus (PP)
- 599 in runoff at time intervals of 48, 72, and 96 h (denoted as 1, 2 and 3) after land application of 600 pig slurry. Hatched line = $30 \ \mu g P L^{-1}$ standard (Clabby et al., 2008).

S PP ■ DUP □ DRP

- 601
- 602
- 603
- 604
- 605

Fig. 2. Histogram of average flow-weighted mean concentration of suspended sediment (SS) (mg L⁻¹) in runoff at time intervals of 48, 72, and 96 h (denoted as 1, 2 and 3) after land application of pig slurry. Hatched line = 35 mg L⁻¹ standard (S.I. No 419 of 1994).

Fig. 3. Histogram of average flow-weighted mean concentration of metals (mg L⁻¹) in runoff
at time intervals of 48, 72, and 96 h (denoted as 1, 2 and 3) after land application of pig
slurry.

Date	Amount by which regulations can be exceeded				
	(kg P ha^{-1})				
To January 1, 2013 ^a	Not limited				
January 1, 2013 - January 1, 2015	5				
January 1, 2015 - January 1, 2017	3				
January 1, 2017 onwards	0				

Table 1. Amount by which regulations may be exceeded over time.

^aUp to 1 January 2013, the regulation limits can be exceeded when spreading spent mushroom compost, poultry manure, or pig slurry (Anon 2010, www.teagasc.ie). This can only happen if the activities which produce this on a holding have not increased in scale since 1 August 2006, and the N application limit is not exceeded (S.I. No. 610 of 2010).

- - -

Table 2. Physical and chemical characteristics of the pig slurry used in this experiment and
 characteristic values of pig slurry from other farms in Ireland.

TP	TN	TK	NH ₄ -N	pН	pH DM			
$(mg L^{-1})$ (%)								
613±40	2800±212		2290 ± 39	7.85 ± 0.03	3.41 ± 0.08	The present study		
800	4200					S.I. No. 610 of 2010		
1630 6621 2666 5.77 McCutcheon, 1997 ^a								
900±7	4600±21	2600±10			3.2±2.3	O' Bric, 1991 ^a		
^a Values changed to mg L ⁻¹ assuming densities of 1 kg L ⁻¹ , \pm standard deviation								

	v and c_{1} changed to me by assuming densities of the by $-z$ standard deviation
665	
666	
667	
668	
669	
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	

Amendment		Alum	Chloride	PAC
		8% Al ₂ O ₃	38% FeCl ₃	10 % Al ₂ O ₃
pН		1.25		1.0 - 3.0
WEP	mg kg ⁻¹	0		
Al		4.23		
Ca				
Fe	%	< 0.01	38	
K				
As		1	<2.8	<1.0
Cd		0.21	<3.4	<0.2
Со				
Cr		2.1	<48	<2.0
Cu			<65	
Mg				
Mn			<1370	
Мо				
Na				
Ni	ma ka ⁻¹	1.4	<48	<1.0
Р	ing kg			
Pb		2.8	<14	<2.0
V				
Zn				
Sb			<2.8	<1.0
Se			<2.8	<1.0
Hø			<0.7	<0.2

691 <u>Table 3. Characterisation of amendments used in this study</u> (O' Flynn et al., 2012)

Table 4. Flow-weighted mean concentrations (mg L^{-1}) averaged over three rainfall events, and removals (%) for dissolved reactive P (DRP), dissolved un-reactive P (DUP), total dissolved P (TDP), particulate P (PP), total P (TP), and suspended sediment (SS).

	DRP	Removal	DUP	Removal	TDP	Removal	РР	Removal	ТР	Removal	SS	Removal
	mg L ⁻¹	%	mg L ⁻¹	%	mg L ⁻¹	%	mg L ⁻¹	%	mg L ⁻¹	%	mg L ⁻¹	%
Soil Only	0.34 ^{<i>ab</i>}	-	0.08^{a}	-	0.42^{a}	-	0.19 ^{<i>a</i>}	-	0.61 ^{<i>a</i>}	-	38.06 ab	-
Slurry Only	0.89 ^c	-	0.27^{b}	-	1.17^{b}	-	1.01^{b}	-	2.17^{b}	-	71.52 ^b	-
Alum	0.33 ^{<i>a</i>}	63	0.15^{c}	46	0.48^{a}	59	0.60^{cd}	40	1.08^{cd}	50	43.82 ^{ab}	39
FeCl ₃	0.32^{b}	64	0.11 ^c	59	0.43 ^c	63	0.47^{c}	53	0.91 ^c	58	24.27 ab	66
PAC	0.26^{ab}	71	0.12^{c}	56	0.37 ^{<i>ac</i>}	68	0.27^{ad}	73	0.64^{ad}	70	18.61 ^{<i>a</i>}	74

^{abcd} Means in a column, which do not share a superscript, were significantly different (P < 0.05)

694