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• 2030 targets for pesticide reduction may
be missed due to static pesticide use.

• Detection of legacy pesticides will com-
promise achievement of EU targets.

• MOFs and VBSs are promising methods of
legacy pesticide remediation.

• Improvement of future EU strategies re-
quired for targeting legacy pesticides.
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Pesticides arewidely used in agriculture to optimise food production. However, themovement of pesticides intowater
bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy
and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce
the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by
the prevalence of legacy pesticides arising fromhistorical applications to land, which can persist in the environment for
several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and re-
quirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well
as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including
exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesti-
cides, are discussed. The fact that some legacy pesticides can be detected inwater samples, more than twenty-five years
after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pes-
ticides in order to meet future targets.
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1. Introduction

Pesticides are defined as substances that are used to suppress, eradicate
or prevent organisms which are considered harmful to crops or nuisance,
including biocidal products and plant protection products (EU, 2021a). Pes-
ticide use is not only associated with the mass production of foodstuffs to
cater for the global demand, but also their unintended release from both ag-
ricultural and urban sectors into non-target ecosystems (Schreiner et al.,
2016; Chow et al., 2020; Mojiri et al., 2020). Once released into the envi-
ronment, pesticides can move through soil or surface water to streams
and groundwater, where they can have unintended ecological effects such
as accumulation in aquatic organisms and loss of ecosystem biodiversity
(Beketov et al., 2013; Stehle and Schulz, 2015; Arisekar et al., 2019). Pesti-
cides also may have carcinogenic, mutagenic, neurotoxic and/or terato-
genic effects on human health (Pereira et al., 2015; Harmon O'Driscoll
et al., 2022).

Pesticide residues are widespread in soils where crops have been
planted and grown (Li and Niu, 2021; Shahid and Khan, 2022; Yang
et al., 2022a). The persistence of pesticide residues in soil has been
categorised using pesticide half-life (DT50), which is defined as the time re-
quired for the chemical concentration under defined conditions to decline
to 50 % of the amount at application (Lewis et al., 2016). Non-persistent
pesticides have a DT50 < 30 days, moderately persistent have a DT50 of
30–100 days, persistent have a DT50 of 100–365 days, and very persistent
have a DT50 > 365 days (Silva et al., 2019). “Persistent” and “very persis-
tent” pesticides can remain in the environment for several decades after
their use has been prohibited, giving rise to so-called “legacy” pesticides.

The detection of legacy pesticides in water samples has been mainly at-
tributed to their desorption from soils or sediments, where they may have
accumulated during previous pesticide applications (Postigo et al., 2021;
Pizzini et al., 2021). Legacy pesticides in the environment arise from a
four-step process: (1) application of pesticides to the land, (2) run-off to
streams and rivers, (3) partition to sediments, and (4) desorption/
resuspension from sediments. Depending on their properties (e.g. polarity,
octanol-water partition coefficient), pesticides can be adsorbed onto soil or
sediment particles, with hydrophobic pesticides being particularly affected
(Khanzada et al., 2020). High pollutant levels in sediments can give rise to
further pollution of the waterway due to the possible resuspension of the
pollutants in the water during handling, dredging, or disposal of the con-
taminated sediment (Pizzini et al., 2021; Mishra et al., 2022). Ivanova
et al. (2021) demonstrated that the intensive usage of dichlorodiphenyltri-
chloroethanes (DDT-related pesticides) in the past was observed in river
sediments taken from all rivers in Moldova. They suggested that the con-
tamination was from agricultural deposition that had undergone degrada-
tion under either aerobic or anaerobic conditions. In a similar study, Qu
et al. (2018) found high concentrations (0.6–99.6 ng·g−1) of organochlo-
rine pesticides in marine sediments from the Gulfs of Naples and Salerno,
which were attributed to historical applications. Pesticide residues can
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bioaccumulate in soils, soil microorganisms, aquatic microorganisms, air
and food chains (Silva et al., 2019; Li, 2022). Urseler et al. (2022) reported
on the detection of atrazine in groundwater and bovine milk samples in
Argentina. They recorded atrazine concentrations of 1.40 μg·l−1 in ground-
water and 20.97 μg·l−1 in themilk samples. The latter value is over the limit
value for human consumption of 20 μg·l−1 established by the US EPA
(2018). They also concluded that the detection of atrazine in the milk sam-
ples indicated that the quality of milk was affected by the groundwater that
the cattle consumed. While studies have focused on the relationship be-
tween sediment adsorption/desorption and legacy pesticides, there is a de-
ficiency of articles contemplating potential soil legacy issues regarding the
role of soil adsorption during the process of pesticide movement to water-
ways, despite the ongoing Farm to Fork strategy (EU, 2020).

Many international organisations have established regulations regard-
ing pesticides and their permissible detectable concentration limits in the
environment (WHO, 2017; US EPA, 2019; EU, 2021b; Australian
Government, 2022). Within the European Union (EU), the Regulation on
Plant Protection Products (Regulation (EC) No. 1107/2009) on placement
of pesticides on the market ensures a high level of protection of both
human and animal health and the environment (EU, 2009a). Council
Directive 98/83/EC (EU, 1998) on the quality of water intended for
human consumption sets the maximum allowable concentration for pesti-
cides, either individually or total, as 0.1 μg·l−1 or 0.5 μg·l−1, respectively.
At EU level, the monitoring of pesticide residues in soil is not required, in
contrast to the monitoring of pesticides in water, which is regulated by
the EU Water Framework Directive (EU, 1998).

Sustainable food production in the EU aims to make food systems fair,
healthy and environmentally friendly (EU, 2020). As part of this Farm to
Fork strategy, the EU plans to reduce the overall use and risk of chemical
pesticides by 50 % by 2030. The EU also plans to revise the Sustainable
Use of Pesticides Directive (Directive 2009/128/EC), as well as promoting
greater use of safe alternative methods of protecting harvests from pests
and diseases (EU, 2009b). This will be achieved by making the best use of
nature-based, technological and digital solutions to deliver better climatic
and environmental results, and reduce and optimise the use of pesticides
(EU, 2020). One such solution is the common European agricultural data
space which will enhance the competitive sustainability of EU agriculture
through the analysis of production, land use, environmental and other
data. This will allow a precise and tailored application of production
methods at farm level (EU, 2020). The EU's current sustainable food
production policy leaves the issues of legacy pesticides unaddressed
(EU, 2020). Furthermore, any policy regarding future use of pesticides
needs to be linked with remediation of existing problems, including legacy
pesticides.

Several physical and chemical treatment approaches, including adsorp-
tion, membrane filtration and advanced oxidation processes, as well as bio-
logical approaches, such as bioremediation, activated sludge processes and
phytoremediation, have been employed to remove pesticides from aqueous
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solutions (Mojiri et al., 2020). Each method provides its own benefits and
drawbacks in terms of both technical and economical aspects (Saleh
et al., 2020). Chemical adsorption is more economical, more efficient and
faster than biological approaches (Uddin, 2017). While the ease of opera-
tion and the flexability of the design are the main advantages of an adsorp-
tion method, the main disadvantage is the requirement for a regeneration
process (Mojiri et al., 2020). It is therefore important for the future quality
of both water and soil that more efficient and effective mitigation methods
for the removal of pesticides are developed. One of the most extensively
used remediation methods of pesticides is adsorption onto low-cost mate-
rials (Mojiri et al., 2020). This is simple and cost-effective. However, the is-
sues of incomplete removal of pesticides and the generation of toxic side
products are the main disadvantages of this method (Mojiri et al., 2020;
Shahid et al., 2021).

In the context of the above discussion of legacy pesticides and their re-
mediation being beyond the scope of the Farm to Fork strategy, this review
will address these knowledge gaps in order to better facilitate achievement
of the 2030 targets. To do this, the current knowledge regarding pesticide
use in Europe, as well as pathways of loss of pesticides, will be examined.
The specific issue of legacy pesticides, including exceedance and persis-
tence in the environment, will be examined in detail. Finally, existing and
emerging methods of pesticide mitigation, particularly of legacy pesticides,
will be discussed.

2. Methodology

The methodology followed during this review is outlined in Fig. 1. The
main steps that were followed were, first, a literature search on legacy pes-
ticides, their mitigation and current regulations; second, refining of papers
obtained, and finally, extraction of relevant information from those papers
and websites, where appropriate. A detailed literature search was under-
taken by searching key words including: pesticide, soil, surface water,
groundwater, adsorption, legislation, legacy, and mitigation. The search
was limited to peer-reviewed papers published, in English, between 2011
and 2020. A geographical limitation of the twenty-seven countries of the
EU was employed for the search. The twenty-seven countries of the EU
will be referred to as the “EU-27” throughout this article. Search engines
used included databases such as Scopus, as well as publisher-specific search
engines including ScienceDirect, the American Chemical Society, and the
Royal Society of Chemistry. References from several papers found in
these searches were also examined for relevant information. Research
Fig. 1. Methodolo

3

papers were selected based on the relevance to the review. A total of 628
articles and a small number of book chapters and reports were reviewed.

Pesticides can be categorised not only by type of use, but also by target
organism, the origin of their active substances, or their hazard category.
The EU and the Pesticide Properties Database (PPDB) classify pesticides
into the categories of herbicide, fungicide, insecticide, and others, while
the PPDB also includes physicochemical, human health and ecotoxicologi-
cal data (Lewis et al., 2016; EU, 2021c). The classification of pesticide used
herein is based on pesticidal activity, that is, fungicide, herbicide, insecti-
cide, etc., not on hazard.

The information on pesticide usage required for this review is not read-
ily available. The Eurostat pesticide sales website contains information on
pesticide sales across the EU-27, for each individual country, covering the
years 2011–2020 (Eurostat – Pesticide Sales, 2022). This information is di-
vided into six pesticide categories (fungicides, herbicides, insecticides, mol-
luscicides, plant growth regulators and other protection products), which
are further subdivided in various groupings based on class of compounds
to give 157 pages of data. The appropriate herbicide, fungicide and insecti-
cide data for each EU member state were mined from the online data and
correlated for use. Land use data were also downloaded from the Eurostat
website (Eurostat – Land use, 2022) and the relevant land use data for
each EU member state were extracted for use. The kilogram of pesticide
used per hectare of land data was calculated for each EU member state by
dividing the appropriate herbicide, fungicide and insecticide data by the
relevant land use data.

3. Pesticide usage and pathways of loss

3.1. Usage of pesticides in the EU-27

The sale of pesticides used within the EU-27 over the ten-year period
(2011–2020) has fluctuated from 356 kt in 2011 to 350 kt in 2020, with
the highest sales of 368 kt recorded in 2018 (Fig. 2). The largest year-on-
year increase was between 2019 and 2020, when the sales of pesticides in-
creased by 21 kt, while the biggest year-on-year decrease of 33 kt was be-
tween 2018 and 2019. In 2019, the weather was the most significant
influence on the pesticide market with dry conditions and drought across
major areas of Europe, leading to reduced disease pressure and lower de-
mand for both herbicides and fungicides (IHS Markit, n.d.). The top five
pesticide consumers across the EU-27 were Spain, France, Italy, Germany
and Poland, with average annual sales over the ten-year period of 74, 68,
gy flowchart.



Fig. 2. Pesticide usage, given as classes of pesticides, in the study area, for the years
2011–2020 (Eurostat – Pesticide sales, 2022).
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58, 46, and 24 kt, respectively. In contrast, the five countries with the low-
est average annual pesticides sales were Malta, Luxembourg, Estonia,
Slovenia, and Cyprus with 108, 150, 621, 1046, and 1139 t, respectively.
Despite the introduction of the regulations, Regulation No 1107/2009 on
Plant Protection Products, Regulation No 396/2005 on Maximum
Residue Levels in Food, Directive 2009/128/EC on Sustainable Use of
Pesticides, and Regulation No 528/2012 on Biocidal Products (EU, 2005;
EU, 2009a; EU, 2009b; EU, 2012), no decline in overall pesticide use
has been observed over the past ten years. One reason for this could be
the rapid replacement of unapproved pesticides with alternatives by
manufacturers.

Fungicides and herbicides were the dominant pesticides used in the EU-
27 from 2011 to 2020, as per Fig. 2, accounting for 40–44 % and 30–36 %
respectively, of total pesticide sales. A smaller proportion (9–16 %) of pes-
ticides usedwere insecticides, with the remainder represented by amixture
of plant growth regulators, anti-sprouting agents, and molluscicides. The
use of herbicides and fungicides increased from 2011 to 2019, at which
point usage decreased by up to 17 % for fungicides. Two possible causes
for this decrease were: (1) the increasing strict regulatory environment
(IHS Markit, n.d.), and (2) weather conditions. The use of insecticides has
increased over the ten-year period, with increases ranging from 35 kt in
2011 to 64 kt in 2020. This increase can be accounted for by such factors
as economic growth, the emergence of new pests and diseases, as well as in-
creased insecticide resistance (Sparks et al., 2020).

The variation in pesticide usage per hectare (kg·ha−1) of agricultural
land was considerable between countries within the EU-27, from Ireland
with 0.6 kg·ha−1 up to>11 kg·ha−1 forMalta (Fig. 3, Table S1). Most coun-
tries reported fluctuating usage over the ten-year period (2011–2020).
Comparing the amount used per ha in 2011 to that used in 2020, eleven
countries, Belgium, Czechia, Denmark, Ireland, Lithuania, Luxembourg,
Netherlands, Portugal, Romania, Slovenia, and Sweden, reported decreas-
ing usage of pesticides per hectare (Fig. 3 and Tables S2–4). Sixteen coun-
tries in 2020 applied <2 kg·ha−1, compared to eighteen countries in 2014
(EU, 2017). However, as reported by López-Ballesteros et al. (2022),
the available pesticide usage data across the EU-27 in terms of area of
application is sparse, with only Spanish and Irish databases including
values of both basic and treated/sprayed areas. Focussing on the weight
of pesticide applied per unit area can be problematic. While the quantity
of pesticide applied can be related to its toxicity, the toxicity of pesticides
differs from one pesticide to the next. As a result of these differences, the
environmental pollution risk might not be proportional to the quantity
of pesticide applied (López-Ballesteros et al., 2022). Jess et al. (2018)
reported that, while there was a 34 % reduction in the area of arable
crops grown in Northern Ireland since 1992, there was an increase of
37 % in the area treated by pesticides, which was attributed to intensifica-
tion of agriculture.

Although sixteen countries in the EU-27 applied <2 kg·ha−1 of pesti-
cides, the overall amount of pesticides being applied across the EU-27
4

continues to rise. The recent EU strategy on sustainable food production,
implemented in 2020, proposes to cut the overall pesticide use in the EU-
27 by 50% by 2030, as well as reducing nutrient losses (especially nitrogen
and phosphorus) by 50 % and fertilisers by 20 % (EU, 2020). One possible
way of achieving this would be to transition from a grassland-dominated
system to a more arable crop-based system. While this could achieve
the required reduction in nutrient loss, it could also lead to an increase in
pesticide usage, particularly herbicides, required for arable and vegetable
crops.

3.2. Pathways of pesticide loss

A significant percentage of pesticides applied in agricultural practices
never reach their target organism (Ali et al., 2019), with Schulz (2004)
estimating that 10 % of applied pesticides reach non-target areas. As a re-
sult, and due to the widespread use of pesticides in agricultural and urban
areas, they can migrate to various surface water resources by several path-
ways, including surface run-off (Chen et al., 2019; Cosgrove et al., 2022),
leaching (Cosgrove et al., 2019), spray-drift (Ravier et al., 2005), ground-
water inflow (Gzyl et al., 2014) and sub-surface drainage systems
(Halbach et al., 2021) (Fig. 4). Surface run-off is the predominant pathway,
mainly through heavy rainfall events and snowmelt, particularly in satu-
rated fields, or fields with hilly slopes or fields with shallow level of
water table (Jing et al., 2021). The input of pesticides to surface water is
particularly high during the main application period of spring and summer,
and also increases during rainfall events (Szöcs et al., 2017).

The main factors influencing the transport of pesticides to receptors are
adsorption and desorption to and from soil particles (Paszko and
Jankowska, 2018), DT50 (Fankte et al., 2014), and physico-chemical prop-
erties of soil (Boivin et al., 2005). Adsorption is predominantly influenced
by the properties and chemical composition of the soil, which is a complex
mixture of inorganicmaterials and organicmatter (Leovac et al., 2015), and
the physicochemical properties of the pesticide (Kodešová et al., 2011). The
adsorption of pesticides on the soil surface determines how pesticides are
either transported or degraded, which will, ultimately, determine the con-
centration of pesticides in both soil and soil solution (Gondar et al., 2013;
McGinley et al., 2022). The relationship between the organic content of
the soil and pesticide adsorption has been well examined in the literature
(Rojas et al., 2013; Wei et al., 2015; Wu et al., 2018). Many soil character-
istics have been investigated with regard to pesticide adsorption, including
pH (Kodešová et al., 2011; Gondar et al., 2013), organic content (Boivin
et al., 2005; Conde-Cid et al., 2019), pore size (Siek and Paszko, 2019), cat-
ion exchange capacity (Kodešová et al., 2011), and soil texture (McGinley
et al., 2022). McGinley et al. (2022) showed that there is a high potential
pesticide transmission risk from soils containing either <20 % clay or
>45 % sand.

Mixtures of pesticides are commonly detected in agricultural soils
(Schaeffer and Wijntjes, 2022). Silva et al. (2019) analysed 76 target pesti-
cides in 311 agricultural topsoils across the EU and observed that almost
60 % of the soils contained mixtures of two or more residues in various
combinations. There are several reasons for this, including pesticides
being applied as tank mixtures, repeated pesticide applications during the
season, and the binding of pesticides to the soil matrix leading to a reduc-
tion in bioavailability, which in turn may lead to significantly reduced deg-
radation. Mixtures of two or more pesticides can form a complex substance
that may express properties unique to that combination (de Souza et al.,
2020). Research on the impact of such mixtures on soil biota has shown
that the threshold value of a pesticide for certain organisms, as defined in
the risk assessment, can be exceeded (Sybertz et al., 2020). Mixtures of pes-
ticides can elicit synergistic effects on biota, even if compounds within the
mixture are contained in concentrations below the individual level effects
(Sybertz et al., 2020). The annual repetition of pesticide spraying can result
in high exposure of soil organism to pesticides for long periods of time,
since somepesticides can remain in the soil for long periods of time depend-
ing on their specific degradation or DT50, as discussed in detail in the next
sub-section (Sybertz et al., 2020).



Fig. 3. Tonnes of pesticide used per hectare agricultural land across EU for the years 2011–2020 (Data sources: Eurostat – Pesticide Sales, 2022; Eurostat – Land use, 2022).
Herbicides are shown in red, fungicides in blue and insecticides in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. Pesticide transfer routes to surface and ground water (Lunardi et al., 2022; Reproduced with permission).
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4. Legacy issues

Soil microorganisms play an essential role in soil dynamics and nutrient
cycling, and have been used as soil quality indicators (Ashworth et al.,
2017). They are responsible for regulating gas exchange, inducing
microaggregation and altering the biochemical soil environment (White
and Rice, 2009). The implementation of a no-tillage process increases a
soil's total organic carbon and decreases its pH, thereby affecting the poten-
tial adsorption and long-term leaching of pesticides (López-Piñeiro et al.,
2019). While a soil's microbial activity may increase under reduced tillage
conditions, this does not necessarily imply faster degradation of pesticides
(Jørgensen and Spliid, 2016). Increased crop rotations may increase the
functions performed by soil microbial communities, which would benefit
plant growth. However, because of the increase in crop rotation, extensive
pesticide applications may adversely affect the soil richness and microbial
diversity. Groundwater makes up the largest reservoir of freshwater in
the world (EU, 2008). Approximately 75 % of EU residents rely on ground-
water for their drinkingwater supply (EU, 2008). Agricultural practices can
deliver high quantities of pesticides into aquifers, which can make ground-
water unsuitable for domestic use (Hakoun et al., 2017; McManus et al.,
2017; Aguiar et al., 2017).

Many toxic pesticides have been banned by the EU, although some can
persist in the environment for decades (Ccanccapa-Cartagena et al., 2019).
In 2022, 452 active substances were approved for use as plant protection
products (PPP) in the EU-27, while 937 had been prohibited (EU
Pesticides Database, 2022). Of the active substances that were on the mar-
ket before 1993, 70 % have since been withdrawn (EU, 2017). McKnight
et al. (2015) found that several banned pesticides, such as dinitro-ortho-
cresol (prohibited in 1998) and simazine (prohibited in 2004), were
found in either streams, sediments or groundwater in Denmark between
2010 and 2012, either at or above the EUmaximum allowed concentration
for pesticides of 0.1 μg·l−1. The number of reported detections of unap-
proved pesticides that were detected in water sources across Europe for
the time period 2011–2020 are shown in Table S5, with several pesticides
being detected on numerous occasions in the same year. Fig. 5 shows the
top 12 herbicides, fungicides and insecticides, from Table S5, that were
detected across the EU-27 after they were not approved by the EU, with
several being detected many years after being unapproved for use.
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The legislation that defines the maximum allowable concentration of
pesticides in drinking water in the EU has been described as the most strin-
gent in the world (Knauer, 2016; Climent et al., 2019). Because of this strin-
gency, many unapproved pesticides continue to be detected in Europe at
levels exceeding legal limits in both surface and ground water (Table S4).
In total, 233 pesticide detections have been observed in EU waterways
after they were prohibited for use in the EU, including some that were
banned in the last century, although not all were above the maximum per-
missible concentration (Table S4). This includes 121 herbicide detections
from 29 different herbicides, 27 fungicide detections from 15 different fun-
gicides, and 85 insecticide detections from 27 different insecticides. Soil
half-life expresses the potential for degradation of a pesticide in soil
(Melin et al., 2020). Given the short DT50 of some of these pesticides,
they should no longer be detected in surface waters during the time period
of 2011 and 2020. Papadakis et al. (2018) suggested that the detection of
prometryn, several years after it has been “not approved”, was due to the
ongoing, illegal use of the herbicide, groundwater inflows into streams, or
long-range transport and atmospheric deposition. A further possible



J. McGinley et al. Science of the Total Environment 873 (2023) 162312
scenario that could explain their presence is that the pesticides have been
bound to soil particles and had only been disturbed prior to the sampling
period during which they were detected (Postigo et al., 2021).

The most commonly detected unapproved herbicides in surface waters,
for the period 2011–2020, were atrazine (17), diuron (13), simazine (12),
terbutryn (11), metolachlor (9) and alachlor (9) (Table S4). Atrazine is
strongly hydrophobic, meaning it has a low solubility in water (de Souza
et al., 2020). Furthermore, it breaks down slowly in water, having negligi-
ble breakdown in neutral or slightly basic solution, with an aqueous DT50 of
>2 years, which categorises it as “very persistent”. In slightly acidic solu-
tions, the aqueous DT50 decreases to approximately 84 days (de Souza
et al., 2020). According to Fig. 5, atrazine was detected multiple times up
to nine years after approval was removed, which is well beyond the DT50
value of two years. This highlights how persistent pesticides can be in
the soil.

The most commonly detected unapproved fungicides in surface waters,
for the period 2011–2020, were hexachlorobenzene (6), quintozene (5),
and carbendazim (2) (Table S4). Twelve different fungicides were detected
for the period 2011–2020. The range of concentrations found for hexachlo-
robenzene (0.029–0.048 μg·l−1) were all below themaximum allowed con-
centration. Twenty seven different unapproved insecticides were detected
in surface waters over the ten year period 2011–2020 (Table S4). The
most commonly detected insecticides were diazinon (12), chlorfenvinphos
(8), lindane (7) and carbaryl (5) (Table S4). From Fig. 5, diazinon was de-
tected 27 years after approval was removed. The fact that the DT50 value
for diazinon is 18 days (Lewis et al., 2016) indicates how long these
pesticides can remain in the environment. If the pesticide is adsorbed by
either soil or sediment, then the DT50 tail of the pesticide can obviously
be extended indefinitely.

5. Mitigation options

Conventional methods to remove pollutants, including pesticides,
from the environment include adsorption, sedimentation, advanced
oxidation processes and membrane technologies (Mojiri et al., 2020;
Jatoi et al., 2021; Shahid et al., 2021). Although these methods are
commonly used, they can involve high operating costs, can generate
toxic side products and do not completely remove the pollutants
(Mon et al., 2018). The development of a more efficient and safer re-
moval systems is necessary. A complete survey of mitigation systems
is beyond this review. A list of these systems, along with relevant ref-
erences, is given in Table S6. Some new, or emerging, systems are now
discussed.

5.1. Metal-organic frameworks

With the development of nanotechnology, Metal Organic Frameworks
(MOFs) have emerged as powerful functional materials for the remediation
of contaminatedwater (Mon et al., 2018;Mondol and Jhung, 2021;Wagner
et al., 2021; Lunardi et al., 2022). MOFs are arrays of inorganic nodes,
either single ions or clusters of ions, connected by organic linkers. The
resulting 3D network has a well-built pore structure, and structure tunabil-
ity, which provides high selectivity for pesticide adsorption. Furthermore,
these materials can have a high surface area, typically 3000–4000 m2 g−1

(Lunardi et al., 2022).
MOFs can be divided into four groups: (1) pristineMOFs, (2) functional-

isation of MOFs, (3) MOF-based composites and (4) MOF-derived mate-
rials. Pristine MOFs are composed of the inorganic-organic hybrid porous
materials without any functionalisation. In the functionalisation of MOFs
group, functional groups are incorporated into the MOFs via traditional
synthesis conditions using organic linkers identical to the pristine
ligand but with attached functional groups, thereby increasing the number
of adsorption sites and selectivity (Lunardi et al., 2022). In MOF-based
composites, the MOF has been integrated with other functional materials,
such as graphene oxide, to increase their adsorption capacity (Lunardi
et al., 2022). MOF-derived materials, which are highly porous nano- or
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mesoporous-materials, are obtained by pyrolysingMOFs under a protective
atmosphere, to give a material with improved diffusivity (Lunardi et al.,
2022). Table 1 shows some of the recent published research in this area
on the adsorption of unapproved pesticides.

Akpinar and Yazaydin (2018) studied the performance of three pristine
MOFs (ZIF-8, UiO-66 and UiO-67) for the adsorption of the unapproved
herbicide atrazine. Because of their larger pore apertures and large pore
size, UiO-67 adsorbed significantly more atrazine than either of the other
MOFs. In a further study, Akpinar et al. (2019) showed that the MOF NU-
1000 had a maximum adsorption capacity of 36 mg·g−1 for atrazine,
which was three times larger than that of UiO-67. This increase was due
to the increased pore size of NU-1000, which facilitates easier diffusion of
the herbicide.

The functionalisation of pristine MOFs is an effective way of enhancing
adsorption performances. Yang et al. (2019) modified Cr-MIL-101 with
substituted furan and thiophene groups and used them in the detection of
four unapproved herbicides, alachlor, diuron, gramoxone (paraquat) and
tebuthiuron. They observed that all the functionalised MOFs showed
efficient adsorption capacities towards the herbicides, which were
preferable to that of the pristine MOF. The adsorption of the unapproved
insecticide dimethoate onto amine-modified MOFs was investigated by
Abdelhameed et al. (2021a). Different amino ratios were synthesised
using aluminium as the metal centre and two different ligands, BDC and
BDC-NH2. Their results showed that a 1:1 ratio of ligands gave an Al-
(BDC)0.5(BDC-NH2)0.5 MOF which had the highest surface area and the
highest adsorption capacity for dimethoate. The 1:1 MOF had a maximum
adsorption capacity of 513.4 mg·g−1, which was higher than the
pristine MOF Al-BDC (154.8 mg·g−1) or the amino MOF Al-BDC-NH2

(266.9 mg·g−1).
MOF-based composites, which are MOFs coupled with other functional

materials, have been shown to improve adsorption performance compared
to individual substances (Lunardi et al., 2022). Abdelhameed and Emam
(2022) synthesised MOF@cotton hybrids by inclusion of MOFs (based on
Al, Fe, Ti and Zr) within cotton fibres. These were used in the adsorption
of the unapproved pesticides, diazinon and chlorpyrifos. Maximum adsorp-
tion capacities were in the range 296.8–464.7 mg·g−1, with Zr-MOF@cot-
ton exhibiting the highest adsorption capacity for both pesticides. Nikou
et al. (2021) prepared a MOF composite ZIF-8/GO, based on graphene
oxide, which was also used as an adsorbent for diazinon and chlorpyrifos.
The maximum adsorption capacity for both diazinon and chlorpyrifos, in
this case, was found to be 54.3 mg·g−1 and 47.2 mg·g−1 respectively,
which are significantly lower than the values observed by Abdelhameed
and Emam (2022) for their composite cotton material. Abdelhameed
et al. (2021b) synthesised a porous MOF composite based on cellulose ace-
tate (Cu-BTC@CA). The surface area of the porous CA membrane was sig-
nificantly increased by incorporation of Cu-BTC within the membrane
from 347.2m2·g−1 to 965.8m2·g−1, while the maximum adsorption capac-
ity for dimethoate increased from 207.8 mg·g−1 to 321.9 m2·g−1 on using
the MOF composite rather than the CA membrane itself. Liang et al.
(2021) constructed two MOF composites using multi-walled carbon nano-
tubes as the template to give two MOF-modified aerogel, ZIF8@MPCA
andUiO66-NH2@MPCA. TheUiO66-NH2@MPCAwas better at the adsorp-
tion of the herbicides, chipton and alachlor, with maximum adsorption ca-
pacity values of 246.8 m2·g−1 and 232.8 m2·g−1, respectively. The authors
ascribed the improved adsorption performance to be due to the large pore
at the micron level of MPCA which enabled the fast adsorption of the
herbicides.

MOF-derived nanoporous carbon (NPC) and carbon hybrid materials
have received much attention recently for pollutant removal, because of
their high surface area, versatile porous structure and ease of production
(Yu et al., 2021). Zhao et al. (2022) synthesised a hollow MOF-derived
NiO/Co@Cmagnetic nanocomposite using cobalt ions as inducers without
the conventional preparation of Fe3O4. This nanocomposite was success-
fully used for the adsorption removal of six organic nitrogen pesticides
from waste water. In a comparison with commercial materials (activated
carbon, single walled carbon nanotube andmulti-walled carbon nanotube),



Table 1
Summary of pesticide adsorption over metal-organic frameworks.

MOF type Adsorbent Pesticide BET surface area (m2·g−1) Total pore volume (cm3·g−1) Max. capacity (mg·g−1) Reference

Pristine UiO-67 (Zr) Atrazine 2345 1.249 11.9 Akpinar and Yazaydin, 2018
NU-1000 (Zr) Atrazine 2210 n.d. 36 Akpinar et al., 2019
CaFu Imidacloprid 2308 0.11567 467.2 Singh et al., 2021
MIL-53 (Al) Dimethoate 866 n.d. 154.8 Abdelhameed et al., 2021a
Al-TCPP Chlorantraniliprole 1359 0.8 371.9 Xiao et al., 2021
UiO-66 (Zr) Ciprofloxacin 730.6 0.046 111.7 Bayazit and Şahin, 2020

Naproxen 730.6 0.046 43.9
NU-1000 (Zr) Fenamiphos 1980 n.d. 212.3 González et al., 2021
Zr-LMOF Parathion-methyl 1453.2 n.d. n.d. He et al., 2019

Modified MIL-101-C1 (Cr) Diuron 951.3 0.554 148.97 Yang et al., 2019
Alachlor 951.3 0.554 122.72
Tebuthiuron 951.3 0.554 79.47
Gramoxone 951.3 0.554 49.05

MIL-101-C2 (Cr) Diuron 502.6 0.302 135.87
Alachlor 502.6 0.302 107.67
Tebuthiuron 502.6 0.302 73.35
Gramoxone 502.6 0.302 45.41

MIL-101-C3 (Cr) Diuron 490.6 0.282 141.42
Alachlor 490.6 0.282 104.02
Tebuthiuron 490.6 0.282 69.71
Gramoxone 490.6 0.282 50.18

MIL-101-C4 (Cr) Diuron 492.4 0.285 161.25
Alachlor 492.4 0.285 105.15
Tebuthiuron 492.4 0.285 81.73
Gramoxone 492.4 0.285 64.11

MIL-101-C5 (Cr) Diuron 543.2 0.319 186
Alachlor 543.2 0.319 149.79
Tebuthiuron 543.2 0.319 94.57
Gramoxone 543.2 0.319 57.99

MIL-53-NH2 (Al) Dimethoate 1060 n.d. 266.9 Abdelhameed et al., 2021a
Al-(BDC)0.5(BDC-NH2)0.5 Dimethoate 1260 n.d. 513.4

Composites Al-MOF@cotton Diazinon – n.d. 367.62 Abdelhameed and Emam, 2022
Chlorpyrifos – n.d. 296.77

Fe-MOF@cotton Diazinon – n.d. 402.02
Chlorpyrifos – n.d. 340.33

Ti-MOF@cotton Diazinon – n.d. 459.73
Chlorpyrifos – n.d. 372.01

Zr-MOF@cotton Diazinon – n.d. 464.69
Chlorpyrifos – n.d. 389.69

ZIF8@MPCA Chipton – 0.029 160.9 Liang et al., 2021
Alachlor – 0.029 196.2

UiO66-NH2@MPCA Chipton 6.42 0.035 246.8
Alachlor 8.87 0.035 232.8

Cu-BTC@cellulose acetate Dimethoate 965.8 n.d. 321.9 Abdelhameed et al., 2021b
M-ZIF-8@ZIF-67 Fipronil 219 0.07 n.d. Li et al., 2020
BSA/PCN-222 (Fe) Methyl parathion 1015 n.d. 370.4 Sheikhi et al., 2021

Diazinon 1015 n.d. 400
ZIF-8/GO (Zn) Chlorpyrifos 720.6 0.80 54.3 Nikou et al., 2021

Diazinon 720.6 0.80 47.2
Fe3O4@C@UiO-66 (Zr) Triticonazole 552 0.18 148.81 Wang et al., 2022

Epoxiconazole 552 0.18 150.15
Prothioconazole 552 0.18 188.32
Imazaquin 552 0.18 173.31
Metalaxyl 552 0.18 135.14
Myclobutanil 552 0.18 145.99
Hexaconazole 552 0.18 169.49
Diniconazole 552 0.18 141.84

Fe3O4/MIL-101 (Fe) Fenitrothion 957.48 0.78 209.71 Samadi-Maybodi and Nikou, 2021
Derived NiO/Co@C Chlorothalonil n.d. n.d. 110.6 Zhao et al., 2022

Tebuconazole n.d. n.d. 43.69
Chlorpyrifos n.d. n.d. 113.3
Butralin n.d. n.d. 47.57
Deltamethrin n.d. n.d. 50.0
Pyridaben n.d. n.d. 78.8

CDM-74 (Zn) DEET 1395 1.75 340 Bhadra et al., 2020
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the extraction efficiency of the MOF-nanocomposite was significantly
higher than those of the commercial materials, particularly for the pesticide
chlorothalonil.

Although MOFs show promise in pesticide remediation from water,
their competitiveness, in terms of cost, selectivity and reusability against
other adsorbents, has to be taken into consideration.
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5.2. Nanoparticles

Nanotechnology emerged as the scientific innovation of the twenty-first
century (Jadoun et al., 2021). The use of nanoparticles for the removal of
pesticides from water have been reviewed in many articles (Ighalo et al.,
2021; Nguyen et al., 2022; Shan et al., 2022; Kajitvichyanukul et al.,



Table 2
Summary of pesticide adsorption over nanoparticle materials.

NP type Adsorbent Pesticide BET surface area
(m2·g−1)

Total pore volume
(cm3·g−1)

Max. capacity
(mg·g−1)

Photocatalytic
efficiency (%)

Reference

Adsorption Biochar-alginate Chlorpyrifos 131.09 0.165 6.25 – Jacob et al., 2022
Fe3O4@SiO2@SBA-3-SO3H
MMNP

Paraquat 67.15 0.141 14.7 – Kouchakinejad et al., 2022

AG-g-PAO/CuFe2O4 Chlorpyrifos 1.03 – 769.2 – Hassanzadeh-Afruzi et al., 2022
Alum nWTR Thiamethoxam 129 0.051 50.0 – El-Kammah et al., 2022
rGO@ZnO Chlorpyrifos 79.51 0.065 – Gulati et al., 2020

Degradation Co-Fe3O4@UiO-66 Fenitrothion 202 0.385 23.6 96.6 Zheng et al., 2022
Co3O4/MCM-41 Methyl parathion 623 0.53 175.2 100 Salam et al., 2020
Ag@ZnONSt Methyl parathion 39.72 0.398 – 100 Veerakumar et al., 2021

Trifluralin 39.72 0.398 – –
Pd@ZnONSt Methyl parathion 32.34 0.375 – 100

Trifluralin 32.34 0.375 – –
PANI/ZnO-CoMoO4 Imidacloprid 142.6 – – 97.4 Adabavazeh et al., 2021
FGD-20 Simazine 75.8 – – 97 Boruah et al., 2021

J. McGinley et al. Science of the Total Environment 873 (2023) 162312
2022; Mehta et al., 2022; Intisar et al., 2022). Nanoparticles (NPs) are
characterised by a large surface area, typically up to 2500 m2·g−1, which
gives them an adsorption rate considerably higher than that of conven-
tional adsorbents. They are more active and faster in the removal and erad-
ication of both inorganic contaminants and organic pollutants, such as
pesticides. They have been used to either adsorb or degrade pesticides.
Table 2 shows the most recently published material on the adsorption
and degradation of prohibited pesticides by NPs.

While adsorption is a scalable and cost-effective method of eliminating
pesticides, it has a major disadvantage of creating secondary waste as a re-
sult of the adsorption of the pesticides. Photocatalytic degradation is amore
ecologically friendly technique, as the degradation process results in the
transformation of the pesticides into less hazardous intermediates, which
then degrade further to produce H2O and CO2 (Qumar et al., 2022). The
photodegradation process is governed by the adsorption capability of the
organic contaminants of the photocatalyst surface. However, to achieve a
high photodegradation rate, the pesticide adsorptionmust also be effective.
A further disadvantage of the degradation process is that degradation effi-
ciency was found to be negligible in the absence of the photocatalyst, indi-
cating that light intensity is an important factor influencing the efficiency
process of the photocatalytic degradation of pesticides (Veerakumar et al.,
2021; Adabavazeh et al., 2021).

5.3. Membrane removal of pesticides

Membrane processes, such as nanofiltration, reverse osmosis and for-
ward osmosis are very efficient in the removal of microcontaminants,
such as pesticides, from water sources (Fujioka et al., 2020; Khanzada
et al., 2020). Vitola et al. (2021) developed a phosphotriesterase-loaded
membrane which was capable of degrading the pesticide paraoxon-ethyl
in vegetative water containing biomolecules similar in size and structure
to the pesticide. The stability of the phosphotriesterase-loaded membrane
was four times higher in vegetative waters than the free enzyme. The
immobilised enzyme also showed activity towards the pesticide degrada-
tion in vegetative water after four months, whereas the free enzyme
showed activity for three weeks only.

Yang et al. (2022b) developed an NH2-MIL-125 (Ti)-based filter paper
membrane, which was used to remove organophosphorus pesticides,
including fenitrothion, from aqueous solutions. The combination of the
Ti-based MOF with the filter paper created a low-cost membrane which re-
sulted in the rapid separation of samples and the removal of organophos-
phorus pesticides. When compared with the MOF itself, the filter paper
membrane demonstrated the same removal efficiency of organophosphorus
pesticides.

Khairkar et al. (2020) fabricated hydrophobic membranes for pesticide
removal using polyamide-polydimethylsiloxane chemistries. These reverse
osmosis membranes exhibited increased pesticide adsorption from the feed
waters compared to commercial reverse osmosis membranes (95 %
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removal of imidacloprid compared to 89% for the commercial membrane).
The procedure for the synthesis of the membranes is cost effective and easy
to incorporate into membrane manufacturing processes.

Lopes et al. (2020) evaluated the potential of a membrane bioreactor to
treat effluents from a fruit processing factory for the removal of pesticides.
The removal efficiency of atrazine by the reactor was only partial (45 %),
which highlighted the requirement of other treatment technologies to get
complete removal of the pesticide. When combining the membrane reactor
with a post-treatment of activated carbon, the removal efficiency increased
to >99.9 %, indicating that the membrane reactor in combination with an
activated carbon post-treatment system was very successful.

Mohammed and Jaber (2022) synthesised a Pickering emulsion liquid
membrane, using Fe3O4 nanoparticles and oleic acid, for the extraction of
Abamectin from aqueous solutions. Extraction percentages of 99 % were
obtained in 10 min, with minimal breakage percentage. The membrane
could be recycled for three cycles with no loss of extraction capability.
Krishnan et al. (2022) modified a polyvinylidene fluoride (PVDF) mem-
brane with either an amine or a bismuth tungstate (BWO) modified MOF
for the reduction and photodegradation of pirimicarb. The BWO-modified
MOF membrane showed the best removal of the pesticide (84 %) and
also the best photocatalytic degradation of the pesticide (86 %).

5.4. Semiconductors

Semiconductor-assisted photocatalysis, based on the use of TiO2, is a
well-studied, advanced oxidation process for the degradation of pollutants,
including pesticides (Luna-Sanguino et al., 2020; Shafiee et al., 2022).
Some of the advantages of this semiconductor are its cheap price, stability
and chemical and biological inertness. Zeshan et al. (2022) discuss the
basic mechanism of TiO2-based photocatalysis, types of reactors used for
photocatalysis, and conditions for pesticide demineralisation into non-
hazardous compounds, such as CO2 and H2O. They demonstrated that ad-
vancements in the characteristics of TiO2-based photocatalysts by doping
or composites enhanced the efficiency of minaralisation. They also showed
that TiO2-based photocatalysts mineralised the pesticides more efficiently
in natural sunlight, thereby promoting their potential use in pilot-scale
experiments.

5.5. Vegetated buffers

Vegetated buffer strips (VBS) can protect streams and other wetland
habitats, as well as improving water quality (Lovell and Sullivan, 2006).
A vegetated buffer strip is defined as an area of land located between
land used for agriculture and land not in agricultural production
(e.g., forest, stream, river, pond). A VBS can decrease the amount of pesti-
cide transported to surface water from fields during rainfall (Wang et al.,
2018).
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Villamizar et al. (2020) reported a study of mitigation approaches to
compare the efficacy of propyzamide removal in a 900-ha headwater catch-
ment. They observed that increasing the VBS to 20-m-width would be the
most effective mitigation intervention. Prosser et al. (2020) reviewed the
efficacy of VBS to reduce pesticide transport into surface waters from agri-
cultural fields, and found that it varied widely, ranging from 10 to 100 %.
They also observed that the majority of studies investigating the ability of
VBS to limit pesticide transport had studied herbicides (89 %). While the
study of the transport of fungicides and insecticides is limited, the authors
believed that the buffers would be as effective at mitigating the transport
of fungicides and insecticides as they were at limiting the transport of her-
bicides (Prosser et al., 2020). Lorenz et al. (2022) showed that the presence
of VBS contributed to a reduction in pesticide risk compared to when no
VBS were present. Furthermore, they demonstrated, through the use of
modeling, that the risk to freshwaters was reduced by 29 %, if a 5-m buffer
strip was used, and 47 %, if a 10-m buffer strip was used. Andrade et al.
(2021) demonstrated that the pesticide concentration found in run-off
water depended on the pesticide solubility, the slope of the streams and
the percentage of woody riparian vegetation cover, and that all of these fac-
tors should be taken into account when designing mitigation measures for
the run-off of pesticides. Butkovskyi et al. (2021) evaluated the use of
novel bed mixtures, consisting of pumice, vermiculite and water super-
absorbent polymer (SAP), for the retention of ionic and water soluble pesti-
cides in unplanted and planted pot experiments. They observed that mix-
tures of all three materials resulted in high retention of both hydrophobic
and hydrophilic pesticides, but with lower leaching potential compared to
systems without SAP. They suggested that mixtures of such materials
would provide treatment options in VBS.

Le Cor et al. (2021) demonstrated the buffering effect of a pond, as a
VBS. Upstream of the pond, ecotoxicological standards were exceeded
with pesticide concentrations of up to 23.9 μg·l−1, while downstream of
the pond, the concentration of the pesticides reduced by 90 % with few
exceedances and a maximum concentration of 0.5 μg·l−1, reflecting signif-
icant water quality improvement. Chaumet et al. (2022) also demonstrated
the buffering effect of a pond, which reduced between 29 and 56 % of the
targeted pesticide molecules (metolachlor, boscalid, epoxiconazole,
tebuconazole, aclonifen, and pendimethalin). They argued that riparian
wetlands should be among the beneficial suggestions for agricultural land
management, which could be further enhanced by promoting vegetation
as an alternative route to pesticide retention or degradation.
6. Management implications across Europe

Following the introduction of the EU Directive on Sustainable Use of
Pesticides in 2009 (EU, 2009b), many papers have been published regard-
ingmeasures for reducing pesticide use. A recent review focussed on the ef-
fectiveness of public policy instruments in reducing pesticide use by
farmers in Europe (Lee et al., 2019). Bans, zoning, monitoring and penalties
were placed in the regulatory domain, while those of the certification, train-
ing, and advisory services were in the informative domain. While the re-
view determined that no specific instrument was guaranteed to reduce
pesticide use, they suggested thatmeasureswere frequently identified as in-
effective if based on the sole use of regulatory-based instruments, namely
bans and prescriptions (maximum doses or pesticide levels). On the other
hand, prescriptions and subsidies, prescriptions and advisory services, or
prescriptions, taxes, training, monitoring and advisory services, were seen
as most beneficial to pesticide reduction.

In a separate review of pesticide monitoring to assess surface water
quality, Chow et al. (2020) attributed a reduction in pesticide use as the
main factor linked to reductions in aquatic pesticide concentration. The
reduction in pesticide use included bans and use restrictions. While the re-
striction or banning of a pesticide is a powerful mitigationmeasure, directly
affecting the quantity of pesticide available for transport to surface waters,
the benefits can be obscured if a banned pesticide is simply replaced by an-
other pesticide. Furthermore, the effectiveness of a pesticide use regulation
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depends on the quantity of pesticide that a farmer uses, which is influenced
by both the weather conditions and pest pressure.

As previously mentioned, the latest Farm to Fork strategy (EU, 2020)
aims to cut chemical pesticide use across the EU-27 by 50 % in 2030. To
achieve this, the Commission intends to “revise the Sustainable Use of Pes-
ticides Directive (SUD; EU, 2009b), enhance provisions on integrated pest
management (IPM) and promote greater use of safe alternative ways of
protecting harvests from pests and diseases” (EU, 2020). The IPM will be
one of the main tools in reducing the use and dependence on chemical pes-
ticides. One approach, that is intended to achieve this goal, is the placing of
pesticides containing biologically-active substances on the market. In a re-
cent EU factsheet, it was noted that, although member states had made
progress implementing the SUD, fewer than one in three states had com-
pleted the review of their National Action Plan within the five-year legal
deadline (EU, 2021a).

The target of reducing chemical pesticide use by 50%by2030 has come
under attack from pesticide and agribusiness lobbyists, who claim that the
target is overly ambitious and unrealistic for EU farmers to achieve (Save
bees and farmers, 2020). The pesticide industry also called for an impact as-
sessment to be made that would look at possible negative effects of the leg-
islation on EU agriculture. The call for an impact assessment has been
supported by a large number of EU member states. In response, the EU
Commission has said that not enough was being done to reduce the level
of pesticide usage across the EU bymember states, resulting in the proposed
strategy (Save bees and farmers, 2020).

Farm Europe is a think tank that focuses on all EU policy areas that im-
pact on rural business. They have reported that the impact of the Farm to
Fork strategy (EU, 2020) on the agricultural sector across Europe will
cause revenues of farmers to plummet by up to € 5000 on average per hold-
ing (FarmEurope, 2021). They also believe that the EU net trade position
will worsen, and that there will be an increase in producer prices that
would cost consumer prices to rise across the EU (FarmEurope, 2021).
They believe that, as a result of this strategy, agricultural sectors will face
massive restructuring, with the abandonment of the least productive
lands and a huge reduction in the number of farm holdings. A report from
the Economic Research Service of the United States Department of Agricul-
ture reported that, if the Farm to Fork Strategy was implemented by the EU,
the impacts would include a decline in agricultural production by up to
12 %, an increase in food costs, and a significant reduction in the EU's
gross domestic product (GDP: ERS USDA, 2020).

There has been considerable media coverage regarding the 50 % chem-
ical pesticide reduction by the year 2030. However, the positivemessaging,
as proposed by the EU Commission, has largely been lost. This would sug-
gest that the informative instrument, discussed by Lee et al. (2019), has
not worked properly and now it appears as if the EU Commission is trying
to force this strategy through by means of regulation instruments.

7. Conclusions

The EU strategy to make food production environmentally friendly by
reducing the overall use of chemical pesticides by 50 % by 2030 may be
too ambitious, given that usage has remained relatively constant since
2011. Non-attainment of this targetmay be further attributed to legacy pes-
ticides, which have been detected in water bodies across the EU-27. The
omission of legacy pesticides from the current EU Farm to Fork strategy,
and the requirement of a maximum allowable concentration of pesticides
in soils or sediments, may be a serious omission.

Among several emerging mitigation methods for the removal of
pesticides from water, MOFs are among the most promising, due to their
well-defined pore structure and high surface areas. One disadvantage that
all adsorbent materials have is the removal of the pesticides from the adsor-
bents, and the interactions of the cleaning materials with the pesticides re-
quires further exploration. Themost cost-effective method is the use of VBS
to protect streams and other wetland habitats as well as improving water
quality. Buffer strips of at least 5 m width are appropriate to substantially
reduce the risk to freshwaters posed by pesticide use. Further research is
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required to investigate the applicability and cost-effectiveness of potential
remediation processes of pesticides on larger scales.
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