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In this paper, we examine heterogeneity in the trip preferences of recreationists by applying a 
random parameters negative binomial model and a latent class negative binomial model to a 
panel data set of beach users at a site on the west coast of Ireland. This is the first such 
attempt in the literature to account for heterogeneity with respect to the impact of the chosen 
explanatory variables in contingent behaviour travel cost models of demand where the 
researcher also must account for the fact that the sample data has been collected on-site. The 
analysis also develops individual consumer surplus estimates and finds that estimates are 
systematically affected by both the random parameter and latent class specifications. There is 
also evidence that accounting for individual heterogeneity improves the statistical fit of the 
models and provides a more informative description of the drivers of recreationalist trip 
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1. Introduction 

Users of a recreational site such as a beach or a forest park tend to be diverse and have 
different reasons for wanting to visit such sites. In the discrete choice recreational demand 
literature this has been a well recognized fact since Train (1998) and now the vast 
majority of published work involving the estimation of destination choice random utility 
models allow for the mixing of taste intensities in the population of interest. This 
recognized heterogeneity across recreational groups using a site such as a beach or forest 
park (and indeed even within particular recreational groups) has not been given the same 
treatment in count data travel cost models of recreation demand as it has in the discrete 
choice literature. This is especially true in on-site contingent behavior models of 
recreational demand. In this article we therefore analyze revealed and contingent 
recreational trip decision making of a group of beachgoers, comparing two empirical 
panel on-site count data modeling approaches that account for unobserved preference 
heterogeneity across individuals, namely the random parameter (RP) model and the latent 
class (LC) model. It is argued that these approaches can be used to better understand the 
factors that influence the frequency of recreational trips and in estimating the welfare 
impacts resulting from changes in site quality. 
 
There have been several attempts in the literature to combine the travel cost model 
revealed preference method and stated preference contingent valuation approaches to non-
market valuation in the form of the contingent behaviour model. This is done with the 
objective of measuring the welfare impact of a hypothetical change in implicit price or in 
environmental quality (Whitehead et al., 2008). Usually, this variation in site or 
environmental quality is obtained through a stated change in hypothetical visits. Examples 
of the use of the Contingent  Behaviour TCM approach in recreational demand modelling 
include Grijalva et al. (2002), Hanley et al. (2003), Christie et al. (2007), Martınez-
Espineira and Amoako-Tuffour (2008) and Beaumais and Appéré (2010)1.  
 
Preference heterogeneity is an element that has also been previously been incorporated 
into cross-sectional count data models. Random parameters count data models for 
example have previously been applied to model the frequency of accidents on roadway 
segments (Anastasopoulos and Mannering, 2009) and to model the demand for off-road 
vehicle recreation (Holmes and Englin, 2010). In terms of using latent class count models 
to account for heterogeneity with respect to the impact of the slope coefficients Wedel et 
al. (1993) presented a latent class Poisson model that accounted for heterogeneity in both 
the base mean event rate and the regression coefficients. Scarpa et al. (2007) also 
examined the existence of latent classes in the total demand for recreational days in the 
Eastern Italian Alps by applying finite mixing to a zero-inflated cross-sectional count 
demand model. Elsewhere, Baerenklau (2010) used a latent class approach to incorporate 
unobserved heterogeneity into an aggregate count data framework in an effort to control 
for endogenous spatial sorting in zonal recreation models. Panel count data models that 
incorporate unobserved heterogeneity, with respect to the impact of the explanatory 
variables, have also been previously developed (see for example Wang et al., 1998). 
Furthermore, statistical packages such as Nlogit (Greene, 2007) and Latent Gold Choice 
(Vermunt and Magidson, 2005) now contain standard commands that allow the researcher 
to readily incorporate a discrete mixture distribution into panel count data models.  

                                                 
1 For an in-depth review of the contingent behaviour modeling literature the interested reader should see Whitehead et al. (2008b). 
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It should also be noted that Egan and Herriges (2006), Beaumais and Appéré (2010) and 
Moeltner and Shonkwiler (2010) have previously developed panel contingent behaviour 
models that account for the on-site sampling issues of endogenous stratification and 
truncation2. The error term added to the parameterized mean function of the Poisson 
models used by the aforementioned authors can be interpreted as capturing unobserved 
heterogeneity. These studies still however do not account for the presence of unobserved 
heterogeneity via the slope coefficients. Therefore, while the many studies that applied 
contingent behavior count-data models have added to our knowledge of factors affecting 
recreational trip frequencies, to date no travel cost model exists for panel data that 
simultaneously accounts for the on-site sampling issues of endogenous stratification and 
truncation and the presence of unobserved heterogeneity via slope coefficients for the 
explanatory variables. This gap in the literature is filled in this paper with the 
specifications of both RP and LC on-site contingent behavior models.  
 
In what follows we first (section 2) present our extension of Englin and Shonkwiler’s 
specification to a panel data negative binomial count data model that corrects for 
endogenous stratification and truncation and also allows for unobserved heterogeneity in 
the population via both latent class and a random parameter specifications. Section 3 
provides a description of the recreational beach site used in the application of our models 
and includes a brief description of survey design and data collection procedures. Our 
estimation results are then presented in section 4. Finally, the paper concludes with a 
discussion of its major findings and their implications for recreational demand modeling.  
 

2. Methodology 

In a contingent behavior study of recreational demand, each person i in the data set yields 
two responses.  The first is the number of trips (yi1) they have made to the recreational site 
under current conditions in the previous 12 months (response or scenario t = 1), and the 
second observation is how many trips (yi2) the person says they would make if a specified 
change in recreational opportunity at the site occurs due to some hypothetical change in 
site quality or facilities (response or scenario t = 2). These trip counts are limited to non-
negative integers and the distribution of trips tends to be positively skewed from zero, 
thus preventing the use of a standard ordinary linear regression model (Cameron and 
Trivedi 2005). Due to the multiple trip observations per individual that occurs in a 
contingent behaviour analysis the researcher can also employ a panel data modelling 
approach.  
 
Following the work of Shaw (1988), Grogger and Carson (1991), Englin and Shonkwiler 
(1995) and Greene (2008) we assume that, based on such data, a panel data count model 
of recreational demand can be estimated using a negative binomial distribution for the 
dependent count variable. As with Englin and Shonkwiler (1995) we also adjust our 
modeling strategy to control for the fact that our data were collected on-site. Unique in the 
literature we also adjust our random effects panel data negative binomial model corrected 
for on-site sampling to allow for the mixing of taste intensities over,  firstly,  continuous 

                                                 
2 Endogenous stratification and truncation are two other important issues of relevance for on-site collected contingent behaviour 
models when the data has been collected on-site. Truncation refers to the fact that on-site data contains information on active 
visitors only and is therefore truncated at positive demand for trips to the site (Shaw, 1988 and Englin and Shonkwiler, 1995). 
Secondly, an on-site survey is subject to the problem of endogenous stratification where due to the method of data collection the 
likelihood of being sampled depends on the frequency with which an individual visits the site. 
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value distributions using a random parameters modeling framework and secondly, over a 
finite group of taste segments in the population using a latent class modeling framework.  
Our starting point for a panel of trip data, i=1,…,N individuals and t =1,…Ti responses 
(here, Ti = 2) for that individual, is the standard negative binomial model for count data 
that allows for overdispersion in the responses; 
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where λit = exp(β′xit) is the conditional mean function and 1/α is the overdispersion 
parameter.  (For convenience at this point, observation subscripts will be omitted.)  The 
vector x represents the set of explanatory variables reported for each individual i. It is a 
k×1 vector of observed covariates and β is a k×1 vector of unknown slope parameters. The 
scalar α and the vector β are structural parameters to be estimated from the observed 
sample. Larger values of α imply greater overdispersion. The model reduces to the 
Poisson when α = 0.  
 
The density that applies to the observations obtained on site was shown by Shaw (1988) 
to equal: 
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For the negative binomial model in particular, the result [see Englin and Shonkwiler, 1995, 
p. 106, (9)] is 
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Departing from this point there are two possible ways of accounting for individual 
heterogeneity in the parameters in the panel negative binomial model adjusted above for 
endogenous stratification and truncation (equation 3) where unobserved heterogeneity in 
the distribution of yit is assumed to impact the mean λit. These are the random parameter 
(RP) modeling approach and the latent class (LC) modeling approach.  
The RP count model generalizes (3) by allowing the coefficients of observed variables to 
vary randomly over people rather than being fixed. Conditional on individual preferences 
for taking trips to the site the probability of observing an individual taking  y trips in a 
given period is still generated by a negative binomial process, but the marginal probability 
across individuals requires integrating over a distribution of preferences which needs to be 
specified by the analyst. The multivariate normal and its transformations are of particular 
appeal in this context because of their computational tractability. The general form of the 
RP model for the negative binomial regression in this case is given by:  
 
βi = β + Γvit (4) 
 
where β is the fixed means of the distributions for the random parameters, Γ is a lower 
triangular or diagonal matrix which produces the covariance matrix of the random 
parameters as ΓΓ′ (the matrix of standard errors that scale the heterogeneity factors)  and 
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vit is the unobservable K × 1 latent random term in the ith observation in βi (K being the 
number of parameters). Although not done in this particular application the researcher 
could also add Δzi to the right hand side of equation (4) where zi is a set of M observed 
variables which do not vary over time and which enter the means and Δ is the coefficient 
matrix, K × M, which forms the observation specific term in the mean. 
The probability P(y|x,v, on site) is the term that enters the log likelihood that is 
maximized to obtain the estimates of θ = (α,β,Γ).  However, because vit is unobserved, 
equation (4) cannot be used to define a likelihood function, and it is necessary to integrate 
this latent random term out. This is done by specifying a parametric probability density 
function, g(vit), that has a known distribution. Given this structure, the log-likelihood for 
the random parameters panel count data model is then given by:  
 

1 1
log ( , , ) log ( | , , , , ,  ) ( )i

i

TN
it it i i ii t

L p y on site g d
= =

α = α∑ ∏∫v
x v v vβ Γ β Γ  (5) 

 
where P(yi|xi, vit, (βi,α) on site) is given in (3) with λ|vit = exp(βi′xit), βi is given in (4) and 
g(vit)is the mixing function. Each element of vit has mean zero and variance one and may 
be distributed as normal, uniform or triangular.  
 
Maximum likelihood estimation of the random-parameters negative binomial model as 
specified in equation (5) cannot easily be computed analytically due to the required 
integration of the function over the distribution of the random parameters. Therefore, the 
model is estimated using a simulation-based maximum likelihood method where the 
estimated parameters are those that maximize the simulated log likelihood function while 
allowing for heterogeneity in the parameter estimates. Halton draws are used to provide a 
more efficient distribution of draws for numerical integration than purely random draws 
(Greene, 2007; Bhat, 2003 and Train, 1998). We therefore define an unbiased simulator of 
P(yi|xi, vit, (β,α) on site) as P*(yi|xi, vit, (β,α) on site). Then, a simulated maximum 
likelihood estimator for the parameter vector θ is given by: 
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A large number R of simulated draws (r = 1, …, R) from the distribution of vi  replace the 
integral in equation (5) with a simulated average, which is approximately equivalent when 
the number of simulated draws is sufficiently large. Maximization of the simulated 
maximum likelihood function produces the vector of mean values for the random 
parameters β and the matrix Γ which once again is the lower triangular or diagonal matrix 
which produces the covariance matrix of the random parameters that describe the 
distribution of β across the sample of individuals. 
 
The second modeling approach used to account for unobserved heterogeneity with respect 
to the impact of the explanatory variables is the latent class model. Within this modeling 
framework, the heterogeneity with respect to the impact of the explanatory variables is 
accommodated by the latent sorting of individuals into groups. The continuous 
distribution is approximated by estimating the location of what Greene (2008) refers to as 
the “support points” and the mass probability in each interval. We interpret this discrete 
approximation as producing a sorting of individuals into C classes, c= 1,…C.  The analyst 
does not observe directly which class, c = 1,…., C, generated observation |ity c  and class 
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membership must be estimated. The latent class model, in generic form, conditioned on 
the particular class can therefore be written as: 
 
P(y|x, on site, class = c) = F(y|x, βc,αc).   (7) 
 
It should be noted that there is a separate dispersion parameter in each class as well. The 
unconditional prior probabilities attached to the latent classes are given by: 

1

exp( )Prob( ) .
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c
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q q
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=
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π = = =
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    (8) 

The logit formulation for the probabilities is a convenient parameterization that allows the 
prior class probabilities to be constrained to the unit interval and to sum to one.  The 
normalization τC = 0 is imposed because only C-1 parameters are needed, with the adding 
up restriction, to specify the C probabilities.  With this structure, there is a one to one 
correspondence between the set of parameters, (τ1,…,τC-1,0) and the set of class 
probabilities, (π1,…,πC-1,1- 1

1
C
c

=
=Σ πc).  For an individual observation, the unconditional 

probability is averaged over the classes, 
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While individuals are observed more than once in the sample we make the assumption 
that conditional on the class membership, which does not change for the person, the trip 
choices are made independently.  It should be noted that there is correlation induced 
across choices in that the observed variables, xi are correlated across visits and, as well, 
since the class membership is fixed, the individuals preferences, embodied in βc are also 
common across visits.  However, we have not assumed that there are unobserved factors 
that are omitted from the model and which are correlated across visits.  With these 
assumptions, the joint probability of the Ti trip choices by individual i is given by 
 
 

1 1 1
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The log likelihood for the panel of data is obtained by using the joint probability in (10) to 
form the log likelihood in (11); 
 
 
 { }1 1 1
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The log likelihood is maximized to obtain the estimate of  
 

1 1 2 2 1[( , ), ( , ),..., ( , ), ( ,..., )]C C C= α α α τ τθ β β β . 
 
It should be noted that the approach adopted in this study of adjusting for truncation and 
endogenous stratification in both the observed and contingent observations distribution is 
different from that in Egan and Herriges (2006) and Beaumais and Appéré (2010) where 
the observed behavior data are assumed truncated to zero and endogenously stratified but 
the contingent behavior data are not (i.e. the on-site sampling correction is only specified 
through observed data in their case). Even though our second observation for each person 
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is the hypothetical number of trips they would make under changed site conditions, we 
argue that the problem of endogenous stratification and truncation still holds. The 
respondent is still someone who has a higher likelihood of being included in the sample 
due to their frequency of use. Also, Moeltner and Shonkwiler (2010) showed that on-site 
sampling issues persist even for past season trip reports if the respondent is intercepted 
on-site this season. The authors labelled this effect “avidity carryover". We argue that a 
similar effect could apply to the hypothetical trip observations, if we interpret them as 
“future season trips".  In that case the contingent behavior data as well as the observed 
behavior data should be assumed truncated. 
 
For consumer utility maximization subject to an income constraint, and where the number 
of trips are a nonnegative integer, Hellerstein and Mendelsohn (1993)  showed that the 
expected value of consumer surplus, E(CSit) derived from count models can be calculated 
as )/(ˆ/)()( piitpiiitit xyECSE βλβ == where yit  is the number of trips to the beach for 
individual i under conditions t, and λit  is the underlying rate at which the number of trips 
occur, such that one would expect some number of trips in a particular year, i.e. λit  is the 
mean of the random variable yit. The coefficient, ßpi is the individual price (i.e. travel cost) 
coefficient. The per-trip E(CSit) is simply equal to -1/ßpi.  The change in the consumer 
surplus resulting from an improvement in the coastal amenities is then given by 
 
 

piiipiiiji xyECSE βλλβ /)ˆˆ(/)()( * −=Δ=Δ                            (12)                           

where iλ̂  is the expected number of trips before any improvements are made to the coastal 

amenities (t = 1) and *̂
iλ  is the expected number of trips after improvements are made to 

the coastal amenities (t = 2). This suggests that the change in consumer surplus for 
individual i can be calculated by dividing the change in the predicted number of trips to 
the beach site by the coefficient of the travel cost variable.  
 
For the latent class model, the change in consumer surplus per trip is estimated by 
weighting the travel cost parameters from our Latent class model by the class probabilities 
in the NB Latent Class Model such that:  
 

∑ =
−=Δ

c

c cpiciiiCSE
1

* /)ˆˆ()( βπλλ                            (13)           
                 
For the random parameters model, estimation of the change in consumer surplus per trip 
is approximated by simulation from draws of the estimated distributions for the travel cost 
random parameter.  
 
It should also be noted that other features of the distribution of predicted trips beyond the 
expected value can be of interest too. For the RP model, quintiles have the advantage of 
being less sensitive to extreme values. In the results section we therefore report a number 
of percentile estimates along with the expected value from the CS distribution. It is also 
important to point out that the relevant comparison in welfare terms is between the 
number of predicted trips at the current level of coastal amenity provision at the beach site 
and the predicted number of trips at the improved level.  Also, one cannot disaggregate 
benefit estimates into additional utility from those who take no extra trips to the beach and 
additional utility from those who visit most frequently. The beach travel cost study and 
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the on-site collected dataset employed are described in the next section prior to the 
presentation of model results and welfare estimates. 

 

3. Data and Study Background 

The application of our model is to a data set generated from a survey that examined the 
possible welfare impact associated with the development of a coastal trail that connects 
two beach areas along the Galway Bay coastline in the west of Ireland. The data were 
generated from an on-site survey of visitors to Silverstrand beach approximately 7km 
outside of Galway city which is accessible by public road only.  The beach was awarded a 
blue flag status in 2009 and is therefore required to comply with certain standards in terms 
of lifeguard safety and patrol as well as high water quality.   The beach itself is only 300m 
long and has only limited facilities in the form of parking, benches, picnic tables and toilet 
facilities. Nevertheless it is a popular destination, particularly in the summer months for 
outdoor enthusiasts and is used heavily by the local urban community of Galway city and 
surrounding area as a recreational amenity. The beach caters to a wide range of uses 
including walking, swimming, sun-bathing, bird watching, kayaking and kite surfing.  
 
Silverstrand beach was chosen as a site to investigate the issue of coastal access as a strip 
of privately owned agricultural land which has a cliff face at the waters edge prevents the 
access of recreationalists to a much larger area of beach and access along the shore to the 
nearby Salthill beach and promenade. If recreations could freely cross this section of 
agricultural land it would open up a coastal walk of over 4 miles. At present users of 
Silverstrand have no right to cross the private farmland to access the additional beach area. 
With this in mind respondents were asked a contingent behaviour question (see figure 1) 
in relation to how their usage of the beach facility would change if the length of beach at 
their disposal was increased through the opening up of a cliff walk that would give them 
access to an additional 1km of beach and also access along the shore to Salthill beach and 
promenade3.  
 
As part of the study, 146 personal interviews were carried out at the beach site.  The 
questionnaire was piloted over a 2 week period in June 2009. This was followed by the 
main survey which took place at Silverstrand during the months of July and August 2009. 
Due to the non-response to certain questions in the main survey, 18 surveys were not 
deemed usable in the final analysis which resulted in a final sample of 128 individual 
responses being used for model estimation. The on-site interviews were conducted on 
both week days and weekends, during all daylight hours. The questionnaire solicited 
information on trips taken to the beach, activities undertaken, personal demographics, 
income, employment status, education, social relations and obligation free time. Each 
interview took approximately 20 minutes.  Finally, attitudinal data were also collected 
from the respondents.  The collection of both observed and contingent trip data points 
resulted in a panel data set of 256 observations. 

                                                 
3 In particular, respondents were asked if the changes described on the card were implemented at the beach resource, would they 
change the number of trips they would take to the site over the next 12 months. This was followed up with an option of choosing 
1. no change in number of trips taken, 2. more trips or 3. fewer trips. Finally the respondent was asked to state the increased (or 
decreased) number of trip if they had chosen option 2 or 3 (as is often the case in contingent behavior studies of this type no 
respondent chose option number 3).  
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Each respondent’s travel cost was computed following the standard approach in the 
literature by considering the direct costs and the opportunity cost of travel. For each 
respondent i and each scenario t, the travel cost was calculated as: 
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where itDist  is the round-trip distance from the respondent's home to the site, time is the 
return travel time (in hours) from home to site, CostperKM  is the average petrol cost per 
mile (the Automobile Association of Ireland’s calculation of €0.224/mile obtained from 
http://www.aaireland.ie/infodesk/cost_of_motoring.asp was used) and iGroupsize  is the 
number of people that travelled to the site in the respondent’s vehicle. Following Shaw 
and Feather (1999), the opportunity cost of travel time is included in the travel cost 
calculation as a proportion (0.25) of the hourly wage, where the hourly wage rate was 
taken as the respondents reported income divided by 2000, based on a 40 hour week for 
50 weeks in a year. No allowance for on-site time was made in the travel cost calculation4.  
Relaxing/Sun bathing was highlighted as the main activity of 35% of all respondents in 
the survey followed by entertaining children (21%), swimming (13%), walking (11%) and 
other water sports (6%). Also, it is notable that 49% of respondents were male, 57% were 
in full-time employment and 63% had been educated up to degree level. Mean annual 
visits to the beach where each respondent was sampled were 11.76 (range 1-60). The day 
of the survey was the first ever visit to the beach for 7% of the sample and respondents 
spend on average 2 hours 31 minutes on site. A visit to the beach was the main purpose of 
the day’s journey for 61% of the sample, and participants in the survey used the beach 
resource for, on average, 4.1 different recreational activities. Mean one-way distance 
travelled was 24 miles and respondents to the survey tended to be at the beach in groups 
of, on average, 2.2 persons (range 1 to 13). Further summary statistics associated with the 
sample are presented in table 1.  

 

4. Results 

Given the contingent behaviour scenarios described in Figure 1 and the model 
specifications described in Section 3 we present the results of a standard panel count data 
model accounting for endogenous stratification and truncation and the results of the 2 
modelling approaches for our on-site sample that accounts for heterogeneity across 
observations with respect to the explanatory variables. In all models, the average number 
of trips undertaken by individual i under (the real or contingent) scenario t is assumed to 
be a function of the travel cost to the site, the travel cost to the respondent’s next preferred 
substitute site, whether the respondent participates in a water sport while on-site, is a 
member of a recreation or environmental organisation, income, age, income whether the 
visit to the beach is by chance due to the respondent being in the area for other business 
and a ‘Contingent Behaviour’ variable, which  indicates whether the visits we are 
explaining are actual, with current facilities, or hypothetical, with improved facilities. A 
further description of each of the independent variables is given in table 1.   

                                                 
4 An in-depth discussion of the many issues that surround the calculation of the travel cost variable is beyond the scope of the 
article but for a good over view of the treatment of time and the specification of the travel cost variable in recreation demand 
models the interested reader is advised to see Hynes et al. (2009). 
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The model in table 2 is the random effects panel negative binomial accounting for on-site 
sampling (henceforth referred to as the NB corrected model). The travel cost coefficient in 
this model is significant at the 5% level and has the expected negative signs. This 
indicates that, on average, as the cost of travelling to the beach site decreases, the number 
of trips made to the site increases. The ‘travel cost to the nearest substitute site’ and the 
‘Incidental visit to the beach’ variable are also significant and have the a piori expected 
signs. The ‘contingent behaviour’ variable was, surprisingly, found to be insignificant in 
the NB corrected model. This finding would appear to suggest that the hypothetical trail 
that facilitates access to a further area of beach does not have a statistically significant 
effect on the number of planned trips to the site. Once we account for the unobserved 
heterogeneity in our sample however the ‘contingent behaviour’ variable in both the latent 
class and the random parameter corrected NB models are highly significant.  
 
Table 3 presents the results of the negative binomial panel model that allows for 
unobserved heterogeneous with respect to the impact of explanatory variables on the 
number of trips taken by the latent sorting of individuals into C classes as well as 
accounting for the issue of on-site sampling (henceforth referred to as the LC model). In 
order to decide the number of classes, we used the information criteria statistics first 
developed by Hurvich and Tsai (1989). We report the Akaike information criterion (AIC), 
the Baysian information criterion (BIC) and the Hannan Quinn statistic for all models in 
tables 2 and 3. In terms of the LC model no one number of classes minimize each of the 
measures. The 3 class specification has the lowest score on 2 of the criteria while the 2 
class specification is lowest for the BIC. As Scarpa and Thiene (2005)  and Hynes et al, 
2008) point out these statistics provide guidance on the number of latent classes to choose 
but this decision also requires the discretion of the researcher. We hence choose only to 
report in table 3 the latent class corrected NB model estimates for the 2 class model even 
though two of the information criteria statistic were lower for the 3 and 4-class models. 
We reject the 4 class model as one of its classes has a complete set of insignificant 
parameter estimates and also both the 3 and 4 class models displayed a high number of 
insignificant parameter estimates in at least one of their other classes.  
 
As can be seen from table 3, the travel cost coefficients in both classes are negative and 
significant at the 5% level and, as mentioned above, the contingent behaviour variable is 
also significant in both classes(at the 90% level in class 1 and at the 99 % level in class 2). 
The travel cost variable would appear to have more or less the same influence in both 
classes which would suggest that both classes exhibit ‘price’ sensitivity to the same 
degree. The ‘travel cost to the nearest substitute site’ and the ‘Incidental visit to the beach’ 
coefficients are also significant at the 5% level and have the a piori expected signs in both 
classes of the model. In fact, all variables are now significant at the 95% level in at least 
one of the two class segments.  It is also interesting to note that the income coefficient is 
now significant for the smaller group of recreationists likely to be represented by class 1. 
This coefficient was insignificant in the NB corrected model. Only by allowing for taste 
heterogeneity in the sample do we pick up in the importance of this characteristic for a 
certain portion of recreationalists using the site. It should also be noted that for this 
smaller segment participation in water sports has no influence on the number of trips 
made to the site whereas it has for class 2. The two-class model specification allocated 
22% of respondents to class one and 78% to class two. 
 
Finally, it should be noted that the LC model had a lower log likelihood value (in absolute 
terms) and a lower score on all of the information criteria statistics than the NB corrected 
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model indicating that the latent class structure provides a better fit for our on-site sampled 
data that when we assume a homogenous mean influence of the explanatory variables 
amongst our beach recreationists.  
Table 4 presents the results of our Random Parameter On-site Negative Binomial 
Contingent Behaviour Model (henceforth the RP model). The RP model resulted in the 
best statistical fit (relative to the on-site standard and LC models) as judged by the value 
of the log likelihood and the information criteria statistics. A likelihood ratio test 
comparing the non-random (table 2) and random-parameters models resulted in a 

statistic with 7 degrees of freedom and an associated p-value of virtually 0. This 
indicates that the random-parameters model is statistically superior to the standard on-site 
NB model. A similar finding was found for the LC model. 
 
The RP model was estimated by specifying a normally distributed functional form of the 
parameter density function and using simulation-based maximum likelihood with 200 
Halton draws (Bhat, 2003 demonstrated empirically that this number of draws can 
produce accurate parameter estimates). The constant term and the contingent behaviour 
dummy were specified as non-random parameters. Given that the contingent behaviour 
variable can be thought of as simply a time period dummy for the before site change and 
after site change scenarios it would not intuitively make sense to specify it as a random 
parameter.  
 
The means of the random parameters were statistically different than zero at the 0.01 level 
or higher for all respondent characteristics. Indeed, bar the water sport participation 
variable, both the mean of the random parameter and the standard deviation of the random 
parameter were statistically different than zero at the 0.05 level or higher for all other 
respondent characteristics. In contrast, some of the parameters for respondent 
characteristics were not significantly different than zero (at conventional levels) in the 
non-random NB model or in one or other of the classes in the LC model (the member of a 
recreational or environmental organisation coefficient was insignificant in both classes in 
the LC model).  
 
As with the LC model, the NB model with random parameters provides a richer 
description of trip preferences than the standard on-site NB model (Table 2). For example, 
the standard on-site NB model indicated that income did not have a statistically 
significant effect on the demand for trips. The estimate of the income effect in the RP 
model however provides much greater information in terms of its influence on trip 
demand. The random parameter estimate on income is now positive but the standard 
deviation estimate indicates that a positive income effect does not apply to all respondents. 
Indeed, it would appear from the results that approximately 6 percent of the respondents 
have a negative income effect. 
 
It is also interesting to note that there is highly significant standard deviation parameter 
associated with the travel cost coefficient. There is much debate in the literature in terms 
of the method of calculating travel costs in recreational demand studies. The standard 
approach is to multiply the distance to the different sites with a per kilometre “out-of-
pocket” cost, usually calculated on the basis of marginal vehicle operating costs with 
perhaps the addition of an estimate of the opportunity cost of leisure time. The most 
common practice in the treatment of the opportunity cost of leisure time is to value it at 
the gross wage rate or some fraction thereof. However, Hynes et al. (2009) argue that the 
opportunity cost of time could be greater than the hourly wage rate (Feather and Shaw 
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(1999) show that, for those on a fixed work schedule, it is possible for the value of leisure 
time to be greater than the wage5), less than the hourly wage rate (there may be an 
element of disutility of work time) or equal to the hourly wage rate (from the classical 
economic perspective that the opportunity cost of other activities equals the marginal 
wage rate).  
 
Hynes et al. (2009) also showed how sensitive the welfare effects of changes in 
recreational site quality and access are to the specification of the “price” in travel cost 
models of recreation demand. By specifying TC as a random parameter as is done in the 
RP model we allow for the fact that some individuals may gain utility from the extra 
distance traveled or from the fact that the value of a person’s leisure time may be worth 
more than what that person earns on an hourly basis. By specifying the TC coefficient as 
random we are therefore also able to reveal the sensitivity of consumer surplus values to 
the potentially wide distribution of the impact of the travel cost coefficient on trip demand. 
With this discussion in mind we next turn our attention to the estimation of consumer 
surplus (CS) from our alternative model specifications. Estimating the welfare effects of 
changes in the quality or supply of site facilities or environmental goods is the main 
objective of most contingent behaviour studies. We therefore consider the implications for 
welfare measures of controlling for the unobserved heterogeneity in our sample through 
the assigning of distributions in our model parameters. In particular, we compare the CS 
per trip (real behaviour), the estimates of the change in number of trips taken and the 
change in total CS per recreationalist as a result of the hypothetical extension to the beach 
being provided through the creation of an adjoining walking trail, across the alternative 
model specifications. The welfare results based on the standard NB, the RP and the LC 
models are shown in Table 5.  
 
The standard panel NB corrected model accounting for truncation and endogenous 
stratification results in a higher mean CS per trip estimate than the models that allow for 
unobserved heterogeneous with respect to the impact of explanatory variables on the 
number of trips taken. The distribution of CS estimates for the LC model varies across 
classes, with each class having a specific CS per trip estimate. The class weighted 
population estimate of per-trip consumer surplus for the LC model is estimated with 95% 
confidence to be between €16.93 and €27.21.  With a mean CS per revealed trip estimate 
of €21.67 and €15.67 for class 1 and 2 respectively this model provides the most 
conservative mean CS estimates across all the reported models6. The RP model provides a 
distribution of CS values, which we have simulated with 10,000 normal draws and by 
ordering the results to identify percentiles. The average values of these are used as an 
approximation to equation (12).  The mean CS per trip estimate in this case lies between 
the equivalent NB corrected model estimate and the weighted LC estimate. Having said 
that, the chosen percentile point estimates of CS per trip from the RP model provides a 
much wider distribution of estimates for our sample than either of the other two modeling 
approaches.  
 

                                                 
5 There is also evidence that people are in corner solutions in the labour market where they are forced to work more hours than 
they would wish. For example, Feather and Shaw (1999) report that almost 50% of their respondents stated that they were “over-
employed”. 
6 While nothing in the construction of the latent class model assures that the consumer surplus measures in a two class model will 
bracket the result from a one class model (the NB corrected model) it is still interesting to note that the CS estimate in the NB 
corrected model does not fall between the 2 class estimates of the latent class corrected NB model. This may be an indication that 
the one class model is forcing an overestimate of the consumer surplus measure and that that controlling for heterogeneity in the 
population with respect to the impact of the chosen explanatory variables provides more reliable CS estimates.   
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To estimate the recreation benefits from the access improvements and the addition of the 
walking trail and additional beach area, the steps outlined in the methodology section 
were followed. To calculate the proportional change in recreationalist welfare from 
implementation of the coastal walking trail, we first take into account the stated change in 
trips to the beach site if the trail were to be put in place. Such a facility improvement 
would increase visits by an estimated 3.32 trips per year under the NB corrected model. 
This is the lowest predicted change in trips across all model specifications.  
Even though the LC model provides the lowest mean CS per trip estimates it predicts the 
second largest change in the number of trips taken per individual as a result of the beach 
site changes being implemented (6.04 additional trips per person per annum). The RP 
model predicts the largest change in the number of trips taken per individual (6.28 
additional trips per person per annum). The relatively low CS per trip estimate for the LC 
model means that the estimated total increase in consumer surplus from the beach facility 
improvements per person per year (the class weighted estimate) is only €0.82 higher than 
the estimate associated with the NB corrected model (€102.26 and €101.44 respectively). 
The RP model produces the largest mean estimate for the change in CS per person per 
year at €140.04. This is approximately 37% larger the equivalent estimate under the LC 
model.  
 
Finally, while analysts tend to evaluate models based on the likelihood function, which 
says how well the model is predicting individual behavior conditional on the distributions 
that have been assumed, it is also worthwhile to evaluate the models based on how well 
the model is predicting aggregate behavior.  On this basis, an examination of Figure 1 and 
2 would suggest that our LC and RP models appear to produce latent revealed and 
contingent trip predictions that lie below that seen in the on-site sample, as one would 
expect, but can at the same time also predict the small (but deflated) number of higher 
frequency visitors evident in the sample. The standard NB on-site model does not appear 
to be able to accomplish that.   

 

5. Discussion and Conclusions 

In this paper, we presented an extension to Shaw’s (1988) and Englin and Shonkwiler’s 
(1995) count data models corrected for on-site sampling where we incorporated 
heterogeneity with respect to the impact of the explanatory variables. In doing so we 
contrasted two contingent behavior panel modelling techniques, namely, the random 
parameter negative binomial model and the latent class negative binomial model and 
applied them to revealed and contingent travel data obtained from a survey of visitors to a 
beach on the outskirts of Galway city in Ireland. We then derived welfare estimates 
relating to individual consumer surplus per trip and relating to changes in the quality of 
the beach site. The distribution of these welfare estimates were derived based on the 
alternative modeling strategies. What this article contributes to the literature is the 
development of panel on-site count data models that allow for the mixing of preference 
intensities with respect to trips taken in the relevant population.  
 
While Egan and Herriges (2006), Beaumais and Appéré (2010) and Moeltner and 
Shonkwiler (2010) have previously developed count data panel models corrected for on-
site sampling their approaches may still be inadequate and potentially misleading if the 
population of interest is heterogeneous with respect to the impact of the chosen 
explanatory variables. Adding a random parameters or latent class framework to these on-
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site panel models facilitates a much deeper analysis of the factors driving the decision to 
make a particular number of trips to a recreational site. It also highlights the fact that there 
are distinct segments of the population who make that decision based on different 
influences.  
 
Also, allowing for heterogeneity in terms of the impact of the travel cost coefficient on the 
number of trips taken facilitates the notion often debated in the travel cost literature that 
some individuals may gain utility from the extra distance traveled and that the value of a 
person’s leisure time may be worth more than what that person earns on an hourly basis.  
By specifying the travel cost coefficient as being heterogonous in terms of its impact on 
trip demand, as is accommodated in the LC and RP models, we can demonstrate the 
sensitivity of consumer surplus values to the potentially wide distribution of the travel 
cost coefficient. 
 
For the application considered in this paper it was found that accounting for individual 
heterogeneity in parameter estimates greatly improved the statistical fit of the contingent 
behaviour models. It was also interesting to note that mean estimates of consumer surplus 
per trip were found to be lower in both the RP and LC models relative to the 
corresponding standard on-site NB model. This may be due to the effect of omitted 
explanatory variables in the standard NB corrected model, which are picked up on to 
some extent by accommodating heterogeneity of the parameters in the RP and LC models. 
Further research is needed in this regard. 
 
Both the latent class and the random parameter approaches also generates additional 
information which is potentially very useful to recreational site managers, simply by 
identifying groups of users with particular demands. In this study, segments of the sample 
that contributed strongly to recreation demand at the beach site, such as higher income 
individuals, were identified in the random parameter models (and a smaller cohort of 
lower income individuals in one segment of the latent class model), whereas they were 
not evident in the standard on-site panel count data analysis.  Understanding the degree of 
heterogeneity in recreation demand is therefore an important research area for both 
practitioners and site managers. Being able to identify different types of users within a 
count data modelling framework should allow such managers to better allocate resources 
between policy issues such as beach congestion and access by boat owners to the water. 
 
An obvious question to ask is which approach to modelling unobserved preference 
heterogeneity in a count data setting is preferable? We would argue that RP approach may 
be more relevant in situation where the recreationalist being analysed are coming from a 
diverse population as may be the case with beach users. However it should be noted that 
while the RP approach identifies which attributes have significant levels of heterogeneity 
in preferences, and quantifies the degree of the spread of values around the mean the 
analyst must impose a distributional form on preferences, and welfare estimates can be 
quite sensitive to this choice.  On the other hand, if the recreational groups of interest can 
be obviously catergorised such that the spread of preferences is what Hynes et al (2008) 
refer to as “lumpy”, such that broad classes of people exist with rather similar values to 
each other, but rather different values to everyone else, then the latent class approach 
makes more sense as it is flexible across classes but imposes the homogeneity assumption 
within the classes. Therefore, if were interested in a contingent behavior analysis of a 
distinct group of recreationalists; for example, different types of rock climbers, or 
kayakers of different skill levels then the LC approach may be preferable.   
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Given the relatively small sample size it would be wise to take a cautious view as to how 
representative the estimated welfare results are of the population of beach users in the 
west of Ireland. Nevertheless the estimated models still demonstrate how controlling for 
unobserved heterogeneity with respect to the impact of the explanatory variables can have 
a significant impact on predicted trips taken and on welfare estimation. Finally, it is 
important to state that while the focus of the paper was on incorporating heterogeneity in 
the preferences for recreation within an on-site model of contingent behaviour, the 
developed modelling framework is just as applicable to cases where data has been 
collected on-site in relation to trips taken by the same individuals over repeat time periods 
or on an individual’s trip activity to alternative sites over a fixed period.  
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Figure 1. Distribution of Actual Sample Trips and Estimated Revealed Trips from On-site 
NB Models . 
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Figure 2. Distribution of Actual Sample Trips and Estimated Contingent Trips from On-site 
NB Models. 

 
 

0
20

40
60

Fr
eq

ue
nc

y

0 20 40 60 80 100
Sample Contingent Trips

0
20

40
60

Fr
eq

ue
nc

y

0 10 20 30
Trips from Panel NB

0
20

40
60

Fr
eq

ue
nc

y

0 20 40 60 80
Trips from Latent Class NB

0
20

40
60

Fr
eq

ue
nc

y

0 20 40 60 80
Trips from Random Parameters NB

 



12-WP-SEMRU-07 
 

 

Table 1. Summary Statistics 

Variable Name Description Mean Standard 
Deviation

Actual trips Number of trips respondent actually took 
to the beach in last 12 months 11.76 14.9 

Hypothetical trips  Number of trips respondent would take in 
next 12 months if scenario implemented 17.31 19.23 

Age Age 41.06 13.68 
Income Gross annual income (€) 51,551 29,334 

Incidental Visit to Beach 
Dummy indicating whether trip to beach 
occurred by chance as happened to be in 
the area anyway (1) or was a planned trip 

to the beach (0)

0.39 0.49 

Member of Recreation or 
Environmental Organisation 

Dummy variable Indicating whether the 
respondent is an active member of a 

recreational organisation such as a kayak 
or surf club or an environmental 

organisation such as Birdwatch Ireland or 
Greenpeace

0.47 0.5 

Travel Cost Return travel cost from home to beach 15.28 17.43 

Travel Cost Substitute Site Return travel cost to the alternative site 
most frequently visited by respondent 13.77 15.32 

Water Sport Participation Dummy variable indicating whether trip 
to beach involved a water sport 0.15 0.36 

 

 

Table 2.  Negative Binomial Contingent Behaviour Model Adjusted for Truncation and 

Endogenous Stratification  

  
Negative Binomial 
Panel Count Model 

Age 0.156*** (0.035) 
Income -0.003 (0.002) 
Incidental Visit to Beach -1.202***  (0.145) 
Member of Recreation or Environmental 
Organisation 0.404*** (0.094) 

Contingent Behaviour 0.481 (0.388) 
Travel Cost -0.033*** (0.009) 
Travel Cost Substitute Site 0.032*** (0.009) 
Water Sport Participation 0.553*** (0.145) 
Constant 0.463 (0.420) 
Scale Parameter 1.345 (1.584) 
AIC 1735 

BIC 1771 

Log likelihood -858 
Standard errors are in parentheses. *** indicates significance at the 1% level, ** indicates significance at the 5% 
level and * indicates significance at the 10% level. The income variable has been rescaled by dividing by 1000. 
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Table 3.  Latent Class Negative Binomial Contingent Behaviour Model accounting for 
Truncation and Endogenous Stratification  

  
Latent Class Negative Binomial  

Panel Count Model 
  Latent Class 1 Latent Class 2 
Age 0.104*** (0.031) 0.215*** (0.052) 

Income -0.005** (0.002) 0.003 (0.002) 

Incidental Visit to Beach -1.481*** (0.197) -0.680*** (0.221) 
Member of Recreation or 
Environmental Organisation -0.052 (0.101) 0.180 (0.114) 

Contingent Behaviour 0.292* (0.172) 0.666*** (0.210) 

Travel Cost -0.047** (0.019) -0.064*** (0.017) 

Travel Cost Substitute Site 0.067*** (0.022) 0.039** (0.016) 

Water Sport Participation 0.166 (0.155) 0.437** (0.182) 

Constant 3.529*** (0.184) 0.534* (0.280) 
Alpha 0.051** (0.026) 0.722*** (0.176) 
Class Probabilities 0.217*** (0.040) 0.783*** (0.040) 

AIC 1605 

BIC 1679 

Log likelihood -781 
Standard errors are in parentheses. *** indicates significance at the 1% level, ** indicates significance at the 5% 
level and * indicates significance at the 10% level. The income variable has been rescaled by dividing by 1000. 
 

 
Table 4.  Random Parameter Negative Binomial Contingent Behaviour Model accounting 
for Truncation and Endogenous Stratification  

Mean of coefficient Standard Deviation  
  of coefficient 
Random Parameters in Utility Functions 
Age 0.19 (0.08)*** 1.15 (0.02) *** 
Income 0.005 (0.001)*** 0.008 (0.001)*** 
Incidental Visit to Beach -0.41 (0.10) *** 0.13 (0.06)** 
Member of Recreation or Environmental 
Organisation 0.41 (0.085)*** 0.71 (0.04)*** 

Travel Cost -0.032 (0.005) *** 0.03 (0.001)*** 
Travel Cost Substitute Site -0.028 (0.007) *** 0.03 (0.001)*** 
Water Sport Participation 0.69 (0.06) *** 0.06 (0.05) 
 
Non-Random Parameters in Utility Functions 
Constant 1.37 (0.09)*** 
Contingent Behaviour 0.47 (0.05)*** 

Scale Parameter 0.029 (.01)*** 
AIC 1557 
BIC 1617 

Log likelihood -761 
Standard errors are in parentheses. *** indicates significance at the 1% level, ** indicates significance at the 5% 
level and * indicates significance at the 10% level. The income variable has been rescaled by dividing by 1000. 
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Table 5. Consumer Surplus (CS) and Change in Trips Taken Estimates from Alternative 
On-Site Model Specifications (all figures are per person). 

 

Model Specification Mean CS per Trip  
(€) 

Change in number 
of trips taken a 
result of new 
walking trail 

Change in Annual  
CS as a 

result of new walking 
trail (€) 

Negative Binomial  30.54 (14.11, 46.96) 3.32 101.44 
Latent Class NB Model    
LC Negative Binomial: Class 1 21.43 (4.20, 38.65) 6.04 129.39 
LC Negative Binomial: Class 2 15.67 (7.36, 23.98) 6.04 94.61 

Weighted LC Negative Binomial* 16.93 (6.66, 27.21) 6.04 102.26 

Random Parameter NB Model    

25th Percentile 14.22 (6.01, 22.43) 6.28 89.30 

50th Percentile 22.64 (13.18, 32.09) 6.28 142.18 

75th Percentile 37.65 (29.39, 45.91) 6.28 236.44 

Mean 22.30 (14.75, 29.86) 6.28 140.04 
Ninety five percent confidence interval in brackets.  * This is the weighted consumer surplus per trip estimate 
estimated by considering the class probabilities in the NB Latent Class Model.** Source: Calculated from model 
results reported in table 4 and based on 10,000 draws from the estimated population distribution. 
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