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Abstract 

 
Wave Energy Conversion (WEC) devices are at a pre-commercial stage of 
development with feasibility studies sensitive to uncertainties surrounding assumed 
input costs. This may affect decision-making. This paper analyses the impact these 
uncertainties may have on investor, developer and policymaker decisions using an 
Irish case study. Calibrated to data present in the literature, a probabilistic 
methodology is shown to be an effective means to carry this out. Value at Risk (VaR) 
and Conditional Value at Risk (CVaR) metrics are used to quantify the certainty of 
achieving a given cost or return on investment. The certainty of financial return 
offered by proposed Irish Feed-in Tariff (FiT) policy is analysed. The influence of 
technological ‘learning’ is also discussed. The model presented identifies those rates 
of learning required to achieve cost-effective deployment under various cost certainty 
requirements. The corresponding cost reduction targets for developers are identified. 
Uncertainty is found to have a greater impact on the investment decision when 
learning progresses at a slower rate. This paper emphasises the requirement for a 
premium to account for cost uncertainty when setting FiT rates. By quantifying 
uncertainty, the presented methodology allows for the required premium to be 
identified. 
 
Keywords: Wave Energy; Feasibility Analysis, Uncertainty, Renewable Energy 
Policy Appraisal, Statistical Simulation.  
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1. Introduction 
Many  national and EU-level renewable energy policies incorporate the development 

and deployment of Wave Energy Conversion (WEC) devices (DCENR, 2010; DECC, 

2011; EC, 2010, 2011; MI and SEI, 2005; Scottish Executive, 2005). With regard to 

novel technologies such as WEC devices, Dalton et al. (2010) have stressed the 

importance of reliable cost information to both inform deployment policy but also to 

aid private investment and device development decisions. Certain jurisdictions, such 

as Ireland, have put in place preliminary feed-in tariffs for initial devices (DCENR, 

2014a), whilst tariffs for future deployment have yet to be finalised. It is the purpose 

of this paper to emphasise the importance of incorporating device cost uncertainty and 

allowing for such uncertainty when setting both initial and long-term tariffs. Not 

incorporating any potential risk premium required as a result of this uncertainty may 

result in ineffective policy, whilst an arbitrary risk premium may lead to over-

remuneration, something which may be particularly undesirable given constrained 

public finances. A means to explicitly quantify the effects of cost uncertainty is 

required such that policymakers may identify with greater precision any potential risk 

premia that may be required when designing feed-in tariffs. This paper presents a 

means by which this may be carried out in order to inform effective policy both in 

Ireland and jurisdictions elsewhere.  

The literature to date demonstrates considerable variability in cost estimates quoted. 

Economic evaluation of WEC-based generation commonly employs the Levelised 

Cost of Electricity (LCOE) metric. This is the ‘ratio of total lifetime expense versus 

total expected output, expressed in terms of the present value equivalent’ (Allan et al, 

2011b; Nuclear Energy Agency and International Energy Agency, 2005). The LCOE 

is expressed as the total cost per unit of output (€/kWh or €/MWh), with a review of 

existing WEC device estimates provided in Table 1. 

 
                                                 
 Abbreviations: AHTS: Anchor Handling Tug Supply; CER: Irish Commission for Energy Regulation; 
CVaR: Conditional Value at Risk; DECC: UK Department of Energy and Climate Change; DCENR: 
Irish Department of Communications, Energy and Natural Resources; ESBI: Electricity Supply Board 
International; FiT: Feed-in Tariff; IRR: Internal Rate of Return; kWh: Kilowatt Hour; LCOE: 
Levelised Cost of Electricity; MI: Irish Marine Institute; O&M: Operation & Maintenance; MVAC: 
Medium-Voltage Alternating Current; MW: Megawatt; MWh: Megawatt hour; PCM: Power 
Conversion Module; PV: Photovoltaic; REFIT: Renewable Energy Feed-in Tariff; SEAI (formerly 
SEI): Sustainable Energy Authority of Ireland; VaR: Value at Risk; WEC Device: Wave Energy 
Conversion Device.  
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Table 1: A Review of Existing Cost of Electricity Estimates for WEC devices 
Author Estimate (€/kWh) No. Devices Location Device 

Archetti et al. (2011) 0.64 21 Italy Pelamis 

Allan et al. (2011) 0.216 Unspecified Scotland Pelamis 

Bedard (2006) 0.06-0.12 44 California Pelamis 

Carbon Trust (2006) [Initial] 0.175-0.644 Small Scale UK Unspecified 

Carbon Trust (2006) [Post 

13,000MW]  

0.087-0.365 Unspecified.  UK Unspecified 

Carbon Trust (2011) [Initial] 0.433-0.547 10MW UK Unspecified 

Dalton et al. (2010) [2004 Cost] 0.05 100 Ireland Pelamis 

Dalton et al. (2010) [2008 Cost] 0.15 100 Ireland Pelamis 

Dunnett and Wallace (2009) 0.16-0.26 15-27 Canada Pelamis 

ESBI (2005) 0.105-0.185 26-209 Ireland Pelamis 

O’Connor et al. (2013a) 0.21 100 Ireland Pelamis 

(1MW) 

O’Connor et al. (2013b) c.0.22-0.26 100 Ireland Pelamis 

Previsic et al. (2004) 0.075-0.144 213 California Pelamis 

St Germain (2005) 0.087-0.111 15 Canada Pelamis 

SQW (2010)  c.0.06-0.33 50 – 

300MW  

Ireland Unspecified 

Teillant et al. (2012) 0.213 100 Ireland Unspecified 

Note: These values have been converted from their respective local currencies where required. Each 
conversion is carried out using the exchange rate observed on the date of article submission/publication 
or nearest date possible. These calculations are available from the author upon request.  

Table 1 shows that considerable uncertainty surrounds LCOE estimates for WEC 

devices, with cost estimates ranging from €0.05/kWh-€0.64/kWh. The literature to 

date has quantified the extent to which variability of cost estimates may be explained 

by variations in WEC design (Dunnett and Wallace, 2009; Falcao, 2011; O’Connor et 

al., 2013a); variations in operational, maintenance and deployment characteristics 

(Dalton et al., 2011; O’Connor et al., 2013b); and differences in output across space 

(Archetti et al. 2011; Dalton et al., 2010; Dunnett and Wallace, 2009; ESBI, 2005). 

Alongside these factors, much variability may also be explained by uncertain input 

costs. Cost estimates to date have been calculated using prototype cost data (Dalton et 

al., 2010, 2011; Previsic et al., 2004) or extrapolation from the operating experience 

of similar industries (Teillant et al., 2012) with many of these studies thus including a 

cautionary note as to the uncertainty surrounding the assumed input values employed.  
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The influence of uncertain device costs, specifically the market price of steel and 

cabling, are important determinants of device cost (Dalton et al., 2010). Alongside 

this, Dalton (2012) and O’Connor (2013a) have discussed how uncertain learning 

rates are amongst the primary determinants of variability in project return. O’Connor 

et al. (2013a) quantified the change in cost due to different scenarios of device 

specification, cost reduction and operational conditions. Teillant et al. (2012) focuses 

on explicitly modelling the operational lifecycle of a WEC device installation and 

considered the variability of financial return with respect to changes in operational 

cost assumptions in an Irish context.  

 

These studies and those quoted in Table 1 have identified the drivers of cost 

sensitivity and the range of potential cost values. A number of methods have been 

employed to quantify the impact each factor may have on LCOE estimates and device 

viability. The most basic approach has been to quote costs as a wide range of potential 

values (e.g. SQW, 2010). Although this may cover all potential cost values, this range 

may be quite wide and there is no further information as to the likelihood of achieving 

a given cost estimate. If a more narrow range of values is desired, most likely point 

estimates of each input parameter may be extracted from a stated range (e.g. Dalton et 

al., 2010; 2012). The reliability of such an approach in addressing uncertainty is 

predicated on the subjective accuracy of the point estimates chosen. The potential 

negative affect this may have is fully realised when one considers that although each 

assumed parameter may have a reasonable chance of occurring alone, the probability 

of a number of most likely parameters occurring together is less likely, culminating to 

form an expected cost based on an ‘unlikely coincidence’ of values (Hertz, 1964). A 

supplementary scenario or sensitivity analysis may estimate the cost/return under an 

alternative set of chosen circumstances, however the likelihood of the resulting 

alternate cost value occurring remains unknown. A third approach may choose a cost 

estimate from a stated range based on that value which may yield an adequate rate of 

return under a given public support mechanism (e.g. Allan et al., 2011). Although 

providing a benchmark for certain policy analyses, such an approach does not 

quantify the degree of uncertainty surrounding the estimate used.  

 

Although these efforts provide insight into the variability surrounding a given cost 

value, the degree of confidence with which one may interpret a given value within 
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such a stated range is still unknown. In the context of investment appraisal, 

quantification of uncertainty surrounding a cost estimate allows investors to identify 

how sensitive expected profits may be to deviations in assumed cost parameters. A 

prudent investor may abstain if there is sufficient possibility that financial return is 

inadequate under a given support mechanism. Quantifying this exposure under a 

given policy regime allows for the effectiveness of that policy to be gauged. Indeed, 

not recognising such uncertainty may affect the interpretation of results and the 

reliability of decisions (Mohamed & McCowan, 2001). Thus an updated, policy-

specific analysis to quantify the impacts of cost uncertainty on WEC deployment and 

to explore fully the implications such uncertainty may have for decisions made by 

investors, developers and policymakers is required. Considering these motivational 

factors, this paper applies a probabilistic methodology to quantify the uncertain cost 

of a given WEC installation, focussing on the implications this may have for Irish 

policy as a case study of application. This method allows for the full range of 

potential uncertain values in favour of subjective point estimates to be employed, 

providing a more objective estimation of project profitability, whilst allowing for the 

simultaneous consideration of all potential sources of cost variability. A sensitivity 

analysis is carried out to elicit results under differing scenarios of installation size and 

rate of technological change, providing information for both developers and 

policymakers as to the rate of cost reduction and/or policy support required for 

feasible investment. Following the majority of the literature to date (Dalton, 2010; 

Dalton, 2012; O’Connor et al., 2013a, 2013b) the case study considered in this paper 

uses the Pelamis P1 device.  

This paper proceeds as follows. Section 2 outlines the probabilistic methodology and 

indices of appraisal employed in this analysis. This is followed by an overview of the 

case study data and parameters employed in Section 3. The results of this analysis are 

presented in Section 4; Section 4.1 presents the results in relation to cost 

quantification, Section 4.2 assesses the uncertainty of the internal rate of return on 

investment, whilst Section 4.3 presents a sensitivity analysis. The purpose of the 

sensitivity analysis is to identify rates of cost and financial return under alternate 

assumptions of future cost reduction. These sections demonstrate the use of this 

probabilistic methodology for investors, developers and policymakers. Finally, 

concluding comments are offered in Section 5. 
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2. Material and methods 
As noted in the Introduction, there is a need for an updated, policy-specific analysis to 

quantify the implications cost uncertainty may have for decisions made by investors, 

developers and policymakers. Montes et al. (2007; 2011) have reviewed 

methodologies to quantify the uncertainty of project profitability in the context of 

renewable energy investment, finding that methods of statistical simulation, such as 

Monte Carlo simulation, are most appropriate. 

 

Gass et al. (2011), Darling et al. (2011) and Previsic et al. (2004) have applied 

probabilistic methodologies to quantify this cost uncertainty for renewable energy 

devices. Falconett and Nagasaka (2010) considered input and output variability for 

small-scale hydroelectric, wind energy and solar PV systems whilst Gass et al. (2011) 

incorporated the impact output variability may have on wind turbine investment. 

Darling et al. (2011) have carried out a similar probabilistic analysis for solar 

photovoltaic technology. Previsic et al. (2004) have applied Monte Carlo simulation 

to test the variability of WEC cost estimates in San Francisco. These studies have not 

applied these probabilistic techniques for feasibility analysis of WEC devices in 

Ireland, nor have they fully explored the implications such uncertainty may have for 

investment, development or policy evaluation. Furthermore, the probabilistic analysis 

carried out by Previsic (2004) was but a small component of that study, with data 

pertaining to a 2004 San Francisco installation. Much of this data has since been 

updated in subsequent studies (Dalton et al., 2010, 2012; O’Connor et al., 2013a). 

 

Following the framework outlined by Falconett and Nagasaka (2010), Figure 1 

illustrates the Monte Carlo simulation used in this paper. Simulation inputs may be 

either certain or uncertain, with uncertain inputs characterised by an expected 

distribution. For each scenario, 10,000 Monte Carlo simulation iterations are run, 

from which a probability density function, and thus the likelihood of cost/profitability, 

may be constructed. The Value at Risk (VaR) and Conditional Value at Risk (CVaR) 

methodology, as employed by Gass et al. (2011), is used to identify the probability 

that device cost (financial return) will be less (greater) than or equal to a stated 

probability threshold. A number of probability thresholds are chosen to account for 

various degrees of certainty that may be required by policymakers/investors in project 



14-WP-SEMRU-02 
 

 

evaluation. Each constituent element of the modelling process will now be outlined in 

greater detail.  
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Figure 1: Overview of Probabilistic Methodology 

    Certain Variables 
(Deterministic Inputs)

 Quantified Risk 
for Investment and Policy Appraisal

 Project Cost
Value of 

Energy OutputCapital Cost

O&M

Index of Project RiskIndex of Project Risk

Monte Carlo Simulation (10,000 iterations)

Scenario Parameters Policy Support Scenario

Learning Rate

Project Output

 Uncertain Variables
(Probabilistic Inputs)

Random Variables drawn  
 from known distribution 
Random Variables drawn  
 from known distribution 

Inputs

Probability Density Distributions
Quantifying Project Cost and Profitability

Indices of Project Cost and ProfitabilityIndices of Project Cost and Profitability

Installation Size
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Note: Flowchart describing steps in probabilistic modelling process used in this paper 

2.1 Scenario Parameters 

We analyse WEC installations of 20, 50 and 100-unit capacity. When considering the 

financial viability of investment, a Feed-in Tariff (FiT) is a price support mechanism 

chosen in many jurisdictions that offers a guaranteed price per unit of electricity 

generated. This is the mechanism chosen to support renewable energy deployment in 

Ireland and is known as the Renewable Energy Feed-in Tariff (REFIT; DCENR, 

2006; 2012). As such, project profitability will be assessed under a Feed-in Tariff 

price support mechanism in this chapter. Numerous feed-in tariff rates are assessed 

for the purposes of this analysis, including the rate of €0.26/kWh proposed by Irish 

policy for initial devices (DCENR, 2014a).  

A ‘learning rate’ is commonly used to approximate the effect economies of scale and 

technological change may have on device cost (e.g. Dalton et al., 2010, 2012; Previsic 

et al., 2004; SQW, 2010). A learning rate or alternatively, an ‘experience curve’, 

calibrates an initial cost estimate to an empirically observed rate of cost reduction 

(Junginger et al., 2004).A full discussion of learning rates is offered by Junginger et al. 

(2004) and Hau (2006). Briefly, a learning rate may be characterised in terms of a 

scaling factor, b, which indicates the percentage scaling of cost with each doubling of 

capacity. Assuming cost reduction begins during the first time period, and denoting p 

as the percentage scaling of cost and A as the cumulative number of units installed at a 

given time, the learning rate may be defined in a continuous fashion by the following 

equation (Bhandari and Stadler, 2009; Dalton et al., 2010; Epple and Argote, 1990; 

Junginger et al., 2004);  

)2ln(
)ln(b

Ap =       (1) 

A lack of operating experience means that the scaling parameter b is unknown for 

WEC devices. The literature to date has employed expert estimates or extrapolated 

patterns of cost reduction observed for offshore wind and photovoltaic (PV) solar 

technology. Dalton et al. (2012) has stated that such values have ranged between 0.82 

and 0.96 (Dalton et al., 2012; Previsic et al., 2004; SQW, 2010), whilst SQW (2010) 

have employed rates of learning of between 0.85-0.90. Following scenarios employed 

by Dalton et al. (2010), SQW (2010), and Carbon Trust (2006), a 0.90 rate of cost 

scaling is chosen for the central analyses of this chapter. Alongside this, a sensitivity 
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analysis is carried out to assess results for cost scaling in the range of 0.82-0.95. This 

range is chosen as that which best represents the rate of cost scaling for most 

industrial products (Hau, 2006), the bounds provided by Dalton et al. (2012) and 

parameters employed by Previsic et al. (2004).  

2.2 Indices of Project Cost and Profitability 

The Levelised Cost of Electricity (LCOE) is employed to calculate project cost whilst 

the Internal Rate of Return (IRR) is calculated to measure profitability. The LCOE is 

a €/kWh metric calculated according to the following equation; 

∑
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Where Ct represents the cost for period t and Yt is the electricity yield at period t. Total 

cost and electricity yield (in kWh) is discounted and summed over T time periods of 

operation subject to the discount rate r. The discounted and summed value of lifetime 

cost is then divided by the discounted and summed electricity yield.  

For a given LCOE, policy support offered must yield a certain return to be financially 

viable. A suitable tool for such appraisal is the Internal Rate of Return (IRR). The 

IRR may be considered as the discount rate r that allows the discounted returns to 

equal the discounted costs of a particular investment, calculated according to (4). A 

greater IRR indicates a greater return on investment, with an IRR value of 10% 

considered the ‘hurdle rate’ required to yield an attractive investment in technologies 

such as WEC devices (Dalton et al., 2010; SQW, 2010). 
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2.3 Index of Certainty 

When interpreting the results, one must choose a point in the calculated probability 

distribution that indicates the profitability and/or cost of WEC deployment with an 

acceptable degree of certainty. Following Gass et al. (2011), the Value at Risk (VaR) 

and Conditional Value at Risk (CVaR) metrics are employed to carry this out. VaR 

may be interpreted as the value at which the probability of observing an event is equal 

to a β threshold probability (Rockafellar and Uryasev, 2002). By using this 
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methodology, one can incorporate investor or policymaker’s aversion to 

underestimating cost/overestimating profitability by choosing a β probability that 

represents an acceptable degree of certainty. CVaR augments this analysis by 

considering the entire tail of the profitability/cost distribution and measures the 

expected value of return, conditional on achieving a value beyond the β Value at Risk 

(Gass et al., 2011; Rockafellar and Uryasev, 2002). CVaR is thus a more prudent 

metric. Furthermore, CVaR does not rely on the assumption of normally distributed 

returns required for VaR (Gass et al., 2011). 

 

The formula to calculate the CVaR from a given probability density function is 

outlined in great detail in Scaillet (2004) and Rockafellar and Uryasev (2000; 2002). 

CVaR calculations for cost are illustrated below in Equation 4:  

( ) ( )∑ ≥=≥=
C

c
VaRcccpVaRccECVaR ββ |)(|    (4) 

This metric is also used to determine the likelihood that the Internal Rate of Return, 

irr, is greater than or equal to an acceptable threshold using Equation 5:  

( ) ( )∑ ≤=≤=
IRR

irr
VaRirrirrirrpVaRirrirrECVaR ββ |)(|    (5) 

where C is project cost; irr is project internal rate of return; (x) is the probability 

density function of parameter x; VaR is the minimum real value of project cost 

achieved with probability β. 

3. Data 
The productivity and cost of a wave energy installation is spatially heterogeneous and 

cost estimates must be interpreted in the context of the chosen location. This paper 

considers the cost of deployment off the north-west coast of Ireland. The specific 

location chosen is that of pre-commercial test site currently being developed at 

Belmullet, Co. Mayo (see Figure 2). Each of the model inputs for this scenario will 

now be outlined. 
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Figure 2: Belmullet Case Study Site and M4 Data Buoy Location 

 
Data Source: Marine Institute (2011) and SEAI (2012) 

3.1 Wave Energy Output 

To model the output of a WEC device, one must obtain data detailing wave activity at 

a particular location and convert this to electricity output. To best approximate these 

conditions, and ensure consistency with existing Irish studies (Dalton et al., 2010; 

2012; O’Connor, 2013a) 2008 wave energy data from the M4 buoy is used (Marine 

Institute, 2012; see Figure 2). The M4 buoy is one of the Irish Marine Institute’s 

network of data collection buoys and is located near the considered Belmullet 

deployment site. 2008 represented the most complete annual profile from the data 

available, which recorded wave conditions in hourly intervals. The data had 127 

missing observations which were interpolated by duplicating observations before/after 

any missing period such that all missing hours were accounted for. This profile of 

wave energy output is converted to electricity output using the Pelamis WEC power 

conversion matrix (Pelamis, 2012).  
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A WEC Power Conversion matrix characterises output at any one moment in time in 

terms of the significant wave height (Hs) and the wave energy period, Te. The Pelamis 

WEC is the device to be analysed in this chapter as it has been employed in the 

majority of studies to date (Table 1). The Pelamis power matrix lists energy output in 

terms of significant wave height (Hs) and Tpow, the power period of a wave cycle. 

Dunnett and Wallace (2009) have defined Tpow as being the ‘period of a single 

sinusoidal wave with the same power as the sea-state’ and assumed that Tpow = Te. The 

analysis presented in this chapter will follow this approach and make a similar 

assumption.  

Tpow and Te are not easy to observe and record in conventional data and, as such, 

simpler measures are recorded instead. The Irish Marine Institute records the mean 

zero up-crossing period, Tz. Dalton et al. (2012) illustrate that assuming a broad wave 

energy Bretschneider spectrum, the best suited function for deep sea long-fetch 

locations, Tz may be converted to Te (and thus Tpow) using the following equation; 

zepow TTT 2.1==       (6) 

3.2 Cost Specification 

Inputs may be categorised as manufacture/procurement cost, installation cost, 

operational and decommissioning costs and output. It is assumed that all 

manufacture/procurement and installation costs are incurred in the initial time period. 

Operation of the plant begins in the following year with O&M and insurance costs 

incurred annually throughout the 15 year operating lifetime of the plant. 

Decommissioning costs are incurred at the end of the life of the plant, in time period 

15. Site-related infrastructural costs have been obtained from the Sustainable Energy 

Authority of Ireland (SEAI). This profile outlines costs used in the Belmullet test site 

and is thus representative of actual infrastructural costs at the chosen case study 

location. Device costs pertain to the Pelamis-P1 WEC, as this is the most mature 

device with the most comprehensive data available in the public domain. The 

Pelamis-P1 has also been used in many Irish studies to date (Table 1). Other 

infrastructural, component and installation data are sourced from the literature.  

Table 2 shows that each uncertain parameter is classified as a probability distribution 

and each known parameter is classified as a point estimate. Each probability 

distribution is selected based on the most appropriate fit to expected values of each 
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input and updated where required to represent 2010 cost values. This is carried out by 

converting to euro using the exchange rate at the time of each analysis, and adjusting 

for inflation if required.  

Each input cost used in this paper is derived from industry interaction and a review of 

those present in the literature. The calculation of each parameter from these primary 

sources will now be discussed in detail. 

 

The Pelamis WEC is comprised of two primary components; 3 Power Conversion 

Modules (PCM) and 4 tubular segments. PCM costs for the Pelamis P1 device are 

sourced from Previsic et al. (2004). Prices are updated to account for changes in price 

from 2003-2010 by using the Irish Wholesale Price Index for machinery and 

equipment manufacture (CSO, 2010). 2003 is chosen as the base year as much of the 

research carried out for the Previsic (2004) data is sourced from 2003 (DTI, 2003; 

Previsic, 2004). This results in 2010 a cost of €1,623,127 for 3 PCM modules4. This is 

considered as a central ‘most likely’ value. In the absence of alternative source of 

device cost variation, the uncertainty surrounding this estimate is considered by 

employing a triangular distribution, taking the range of minimum (-21%) and 

maximum (+31%) bounds quoted by Previsic et al. (2004). 

 

The tubular segments for initial Pelamis WEC devices will be constructed from steel 

for initial installations (Previsic, 2004). Dalton et al. (2010) state that the 2008 cost 

per ton of finished and coated steel may be between €5,000-7,000/ton, with four 

segments, including end caps, totalling 289 tonnes. Since these values were estimated 

in 2008, the price of steel rose briefly in 2009. However, the cost returned to that of 

2008 levels in 2011 (Indexmundi, 2012a), with O’Connor et al. (2013a) deeming 

these estimates appropriate for 2013 steel costs. Thus, it is assumed that the range 

quoted by Dalton et al. (2010) is sufficiently up to date for this analysis. Steel costs 

are parameterised by assuming that €6,000/ton represents the mean expected value. 

Any deviations beyond this are distributed according to a normal distribution, with all 

                                                 
4 Previsic et al. (2004) have estimated that the cost of 3 PCM units totals $1,565,000 (€1,492,181; 
according to the Jan 2003 exchange rate of US$1 = €0.9534706331). NACE 29 (Machinery and 
Equipment) had an 8.775% increase in prices according to the Irish Wholesale Price Index (CSO, 
2010), giving a 2010 cost of €1,623,127.  
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potential values falling within the €5,000-€7,000/ton range. This corresponds to a 

standard deviation of €333 per tonne.  

 

Mooring line costs are taken from Allan et al (2011b), where the central value is 

converted to give a 2010 euro value of €552,1655. Given that these values were 

considered valid in 2011 they have not been updated for inflation. The variation 

surrounding this central estimate is assumed to follow a triangular distribution with 

minimum (54%) and maximum (118%) values corresponding to the range quoted by 

Allan et al. (2011b).  

Once the electricity has been generated, it must be transported to the grid. It is 

assumed that 8.7km of export cable will be required, as this is the amount of cabling 

required for the deep sea test site at Belmullet (O’Connor et al., 2013a; SEAI, 2011). 

The type of export cable required varies depending on the capacity of the installation 

considered. Scenarios of 20, 50 and 100 unit Pelamis installations are considered for 

this study, with capacities of 15MW, 37.5MW and 75MW respectively. Sharkey et al. 

(2011) and O’Connor et al. (2013a) assume that 33-38kV Medium Voltage 

Alternating Current (MVAC) is sufficient for smaller WEC installations of 20MW or 

less, whilst O’Connor (2013a) assume 110kV cable is employed for installation sizes 

of 21-110MW. Thus, 38kV MVAC is employed for 20 unit installations, with 110kV 

cable installed for larger installations. The central cost values per unit of cable are 

derived from O’Connor et al. (2013a), where it is assumed that one kilometre of 38kV 

export cable costs €173,000, whilst one kilometre of 110kV export cable costs 

€288,000.  

 

As CER (2005) discuss, the cost of this cable is subject to considerable uncertainty 

and fluctuation, with the primary driver of these costs being materials costs. This 

claim is enforced by Green et al. (2007), who state that one third of cable costs may 

be attributable to the price of copper on commodity markets. To account for this 

uncertainty a standard deviation of 27% of the copper component of cost is assumed. 

                                                 
5 Allan et al. (2011b) employ a central mooring estimate of £362,240. The source for these cost 
estimations is Carbon Trust (2006) and as such, costs are converted to euro using the July 2006 
exchange rate of GBP£1 = €1.449. This gives a 2006 euro value of €525,229 for the central estimate. 
This is updated according to the Wholesale Price Index for Machinery and Equipment where an 
increase of 5.1282% was observed to yield a 2010 Irish cost value of €552,165.  
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27% is chosen as this is the standard deviation of annual average copper prices 

observed since 2002 (Indexmundi, 2012b). A 27% change in copper price, when 

considered in the context of the effect it may have on overall cable cost, results in a 

standard deviation of €15,570/km for 38kV cable, and €25,920 per kilometre for 

110kV cable. To improve the accuracy of simulation results, it is assumed that steel 

and copper commodity prices are positively correlated. The degree of correlation is 

estimated from market data, where average annual commodity prices have been 

observed to have a correlation coefficient of 0.647 (Indexmundi, 2012a; 2012b).  

To facilitate the transmission of electricity from WEC devices, an offshore substation 

is required. O’Connor et al. (2013a) assume that an offshore substation for an 

installation of greater than 5 MW in size costs €60,000 per MW installed. This cost is 

included as a deterministic point estimate. 

The cost of onshore works have been obtained from SEAI, pertaining to the costs for 

the first full scale installation at Belmullet, Co. Mayo, of 5MW capacity. These costs 

are parameterised as deterministic variables as they pertain to an actual installation. 

They are also assumed constant regardless of the scale of the installation.  

The installation of cable is assumed to follow the same pattern as that assumed by 

O’Connor et al. (2013a), where 1km of untrenched, rock protected cable installation is 

required, at a total cost of €1,039,000. The remaining 7.7km will be installed by 

trenching. The calculation of installation costs for this 7.7km requires both an 

approximation of the number of days’ work and the cost per day. Kaiser and Snyder 

(2011) outline the determinants of installation cost variability and give insight into the 

potential variability of days required. O’Connor et al. (2013a) report an expected 

value of €288,000/km for export cable installation for sites similar to the Belmullet 

site. This is combined with the variability in duration observed by Kaiser and Snyder 

(2011) to give an overall measure of export cable laying cost variability. Kaiser and 

Snyder (2011) report a median rate of installation at 0.73km/day. Converting the 

expected cost per km reported by O’Connor (2013a) to the expected cost per day 

using the findings of Kaiser and Snyder (2011), it is assumed that the present value 

expected daily cost for export cable installation at a site like Belmullet is 

€386,301/day. The rate at which cable is installed is simulated according to a 

triangular distribution fitted to the data observed by Kaiser and Snyder (2011), where 
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the rate of installation ranges from 0.2km/day to 1.4km/day, with a median value of 

0.73/day.  

As similar vessels are employed, mooring and array cable installation are dealt with 

together in model specification. An Anchor Handling Tug Supply (AHTS) class 

vessel was used for prototype deployment in the UK (Previsic, 2004), and it is 

assumed that this class of vessel will be used for deployment in Ireland. The range of 

day rates for AHTS and the associated vessel spread from Kaiser and Snyder (2011) is 

employed, whereby a range of €17,596 - €52,824 per day is used. This is simulated 

according to a normal distribution, with a mean €35,228 and standard deviation 

€5,871. An estimated average installation time of 6 days (2 days for mooring and 4 

for device installation) has been assumed, following RPS (2009). As there is no data 

outlining commercial-level device installation, this is taken as a central value with the 

associated distribution taken from AHTS installation activity outlined by Kaiser and 

Snyder (2011). Thus, a triangular distribution is assumed, with a central value of 6 

days, a minimum value 0.52 times the central value (3.12) and a maximum value of 

2.12 times the central value (12.72 days). 

 

No empirical data explaining costs during the operational phase exist to date. The 

majority of recent studies have calculated O&M costs as % of capital costs (e.g. Allan 

et al., 2011; Dalton et al., 2010, 2011; O’Connor et al., 2013a; SQW, 2010). Thus, 

both annual insurance and operation and maintenance costs are assumed to range 

uniformly from 1-3% of total capital costs following the ranges quoted to date (Dalton 

et al., 2012; Dunnett and Wallace, 2009; Previsic et al., 2004; St Germain, 2005; 

SQW, 2010). Decommissioning costs are incurred in time period 15, and represent 

10% of the total capital cost, as per the assumptions employed by Dalton et al. (2012). 

Finally, it is assumed that the devices will have 75% availability when operational, 

following the assumption of O’Connor et al. (2013a) for Mature Technology 

Reliability in Ireland.  
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Table 2: Unit Costs for Typical Pelamis Wave Energy Installation 

Parameter 

Parameters 

Source 
Min 

Mean 

(SD if 

applicable) 

Max 
Distribution 

Type 
Requirement  

A. Manufacture and Procurement 

PCM (3) 79% €1,623,127 131% Triangular Total per WEC A, B  

Steel (per tonne)  €6,000 

(€333) 

 Normal 280t  A, B  

Mooring  54% €552,165 118% Triangular Total per WEC C 

Admin, EIS and 

Onshore works 

- €5,682,925 - Point Estimate Total per installation D 

Export Cable  

(≤20MW) 

- €173/m 

(€15.57) 

- Normal 8.7km per installation J 

Export Cable  

(≥20MW) 

- €288/m 

(€25.92) 

- Normal 8.7km per installation J 

Offshore 

Substation 

- 60,000/MW - Point Estimate Total per installation J 

B. Installation 

Device/Mooring 

(per day) 

- €35,228 

(€5,871) 

- Normal - E, F 

Device/Mooring 

(no. days) 

52% 6 112% Triangular - F 

Export Cable Lay 

(per day) 

- €386,301 - Point Estimate 7.7km   E, J 

Export Cable Lay 

(rate of 

installation) 

27% 0.73km/day 191% Triangular 7.7km   E 

Untrenched 

Export Cable Lay 

and Rock 

Protection 

- €1,039,000 - Point Estimate 1km J 

C. Operational & Decommissioning Costs (Calculated as % of Capital Expenditure [A+B]) 

O&M 2%  - 5%  Uniform per annum; for 15 

years 

G 
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Insurance 2%  - 5%  Uniform per annum; for 15 

years 

G 

Decommissioning  - 10% - Point Estimate Time Period 15 G 

D.Further Model Parameters 

Learning Rate 82% 90% 95% Point Estimate 

Scenarios  

- A, B, F, G 

Device 

Availability 

- 75% - Point Estimate  J 

Discount Rate - 6% - Point Estimate - G 

Corporation Tax  - 12.5%  - Point Estimate Per unit of profit H 

Note: Sources are as follows. A: Previsic et al., 2004; B: Dalton et al., 2010; C: Allan et al., 2011b; D: 
SEAI, 2011b; E: Kaiser and Snyder, 2011; F: SQW, 2010; G: Dalton et al., 2012; H: Department of 
Finance, 2011; J: O’Connor et al., 2013a. 

4. Results and Discussion 

4.1 Quantification of Cost Uncertainty 

Assuming 100% availability, the annual energy output for one Pelamis P1 device 

using the methodology outlined in Section 3 is 2,500,480kWh. Scaled according to 

the 75% availability factor, this results in an annual output of 1,875,360kWh. 20, 50 

and 100 unit steel-based Pelamis installations are considered for this analysis. Table 3 

lists the distributional characteristics of project cost for each installation size and 

technology specification. The expected (mean) cost of electricity generated from 

small-scale installations of 20-unit size is €0.324/kWh, falling to €0.27/kWh and 

€0.244/kWh respectively for 50 and 100-unit installations. To incorporate aversion to 

risk and identify cost values at various degrees of certainty, LCOE estimates are also 

evaluated at various other probability thresholds using the VaR and CVaR 

methodologies. Results displayed in Figure 3 plot the VaR for each β threshold. Using 

the VaR criterion, the levelised cost of 20-unit installations will not be greater than 

€0.348/kWh at 95% probability according to the assumptions of this analysis. If a 

lower degree of certainty is preferred, the VaR at other thresholds may also be 

observed using the cumulative density functions of Figure 3. The CVaR methodology 

provides a more prudent measure, with results presented for 75, 85 and 95 percentile 

thresholds in Table 3. One can see that CVaR95 is slightly greater than VaR95, rising to 

€0.353/kWh from €0.348/kWh for 20-unit installations, for example. Overall, a 

premium of 5.5% is required when evaluating cost at CVaR75 instead of the mean 
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expected value, rising to 6.7% for CVaR85 and between 8.9%-9.2% for CVaR95. 

Interestingly, the proportional cost premia are relatively stable across installation 

scenarios. This is an important consideration for policymakers and investors when 

considering the impacts of uncertainty on investment performance and policy support.  

The cost of electricity is inversely correlated with installation size, due to two factors. 

First, larger installations have the same range of fixed costs as smaller installations. 

These fixed costs are spread over a larger number of units, thus reducing the cost per 

unit of electricity. Second, a larger installation results in greater scope for cost 

reduction through ‘learning’. Indeed, these factors result in cost values for 50 unit 

installations being 16% less than 20-unit installations across all thresholds. If the first 

full-scale installation is of 100-unit structures, the cost of electricity falls by a further 

9%. 

 

Table 3: Levelised Cost (€/kWh) 

Installation Size Expected value (Mean) CVaR75 CVaR85 CVaR95 

20 Units (15MW) 0.324 0.342 0.346 0.353 

50 Units (37.5MW) 0.270 0.285 0.288 0.294 

100 Units (75MW) 0.2444 0.258 0.261 0.267 
Note: The ‘CVaRn’ value represents the expected (mean) cost value greater than or equal to those at the 
nth percentile. 

Although each estimate found in the literature (See Table 1) is calculated under its 

own specific set of assumptions and circumstances, the probability calculated using 

this methodology allows one to apply the findings of previous research in the context 

of a given case study application. To illustrate, O’Connor et al. (2013b) state that if 

insurance costs are 1% of capital costs per annum, the LCOE for a 100 unit 

installation may be either c.22 or c.26c/kWh under respective scenarios of 1% or 3% 

O&M costs. However, O’Connor et al. (2013b) are unable to calculate the likelihood 

of achieving either value. This probabilistic framework provides this understanding. 

Under the assumptions of this paper (as opposed to those of O’Connor et al. (2013b)), 

the VaR criterion suggests that there is a 1.1% chance that the LCOE of 100-unit 

based installations will be less than or equal to €0.22/kWh. This rises to 92.13% for 

€0.26/kWh. Thus, the added value of this model is realised when one considers that 

the degree of risk associated with each cost value is now estimated. For a risk-averse 
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investor who is basing an investment decision on either cost value, the stated 

probabilities for the €0.22/kWh estimate is likely to be too great a risk burden to 

incentivise investment. Furthermore, this probabilistic approach also allows for the 

probability of achieving intermediate cost values.  

The results of Table 3 should be interpreted in the context of the Irish deployment 

scenario outlined in this paper. However, these results overlap with the Irish case 

study of O’Connor et al. (2013b). This provides a degree of validation for this model, 

as it can be seen that results of this paper correspond to those carried out for similar 

installation sizes, although under an alternate set of assumptions.  

 

Figure 3: Cumulative Density Distribution of Pelamis Cost 

Figure 3(a) 20 Unit Installation 

 

Figure 3(b) 50 Unit Installation 
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Figure 3(c) 100 Unit Installation 
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Note: Figures display cumulative probability of achieving a given levelised cost value. 

Each point on the curve represents the probability that cost will be less than or equal to 

that value. Vertical lines mark key CVaR levelised cost values quoted in Table 3. The 

point on each LCOE curve indicates the probability that LCOE will be less than or equal 

to this value. This value is analogous to the Value at Risk (VaR), whilst the cumulative 

probability is analagous to the β threshold. 

 

4.2 Policy Appraisal in the Presence of Cost Uncertainty 

4.2.1 Appraisal of Current REFIT Policy Proposals 

Using the case study parameters presented, we will now use the probabilistic model 

for analysis of policy support mechanisms, quantifying the degree of certainty to 

which the proposed Irish REFIT of €0.26/kWh provides a positive rate of return on 

investment. Profitability values are evaluated at CVaR5, CVaR15 and CVaR25 

thresholds. These criteria analyse the weighted mean of IRR values less than or equal 

to the nth percentile and may be interpreted as there being an n% chance that the IRR 

will be greater than or equal to the cost value quoted.  

Table 4 shows that the threshold of risk aversion chosen has a greater impact on the 

magnitude of return than LCOE, with absolute premiums of 1.5-1.64%, 1.9-2% and 

2.4-2.6% required when evaluating IRR at CVaR25, CVaR15 and CVaR5 thresholds 

respectively. Cost uncertainty has a much greater proportional impact on smaller 

installation sizes, with IRR rates falling by 0.75%-122% for 20-unit installations. 

However, this falls as installation size increases, with 100-unit installations having 

increased IRR rates of 27-46% at the various thresholds of risk aversion.  

Table 4: Internal Rate of Return: REFIT €0.26/kWh  

Installation Size Mean CVaR25 CVaR15 CVaR5 

20 Units (15MW) -0.0216 -0.038 -0.042 -0.048 

50 Units (37.5MW) 0.0272 0.011 0.008 0.003 

100 Units (75MW) 0.054 0.039 0.035 0.029 

Note: CVaRn represents the expected (mean) IRR achieved for cost values less than or equal 
to those at the nth percentile when a REFIT of €0.26/kWh prevails. 
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Similar to Figure 3, Figure 4 plots the IRR VaR for each probability threshold, where, 

although positive IRR values are prevalent for larger installations, the unlikely 

possibility of achieving 10% IRR under a €0.26/kWh REFIT can be clearly observed. 

Overall, Figure 4(a) shows that 20-unit installations have a 3.9% chance of having a 

positive IRR according to VaR criteria. Figures 4(b) and 4(c) show that 50 and 100-

unit installations have greater potential to yield a positive IRR. It has been stated that 

an IRR of 10% is the rate required to incentivise investment (Dalton et al., 2010; 

SQW, 2010). Although there is a 99% chance or greater that 50 or 100-unit 

installations will yield a positive rate of return, there is <1% chance that this will 

exceed the 10% IRR required for viable investment. Analysing expected values in this 

context reveals that there is less than 1% chance that current REFIT policy is effective 

in incentivising deployment for all installation sizes.  

These results quantify the effect cost variability may have on WEC project return and 

the impact this may have on the investment decision. This further demonstrates the 

added value offered by the developed probabilistic model of analysis. One can see 

that results are also sensitive to installation size, with these considerations thus 

important in designing an appropriate REFIT.   

Figure 4: Cumulative Density Distribution of Internal Rate of Return 

Figure 4(a) 20 Unit Installation 
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Figure 4(b) 50 Unit Installation 

 
 

Figure 4(c) 100 Unit Installation 
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Note: Figures display cumulative probability of achieving a given Internal Rate of 

Return (IRR). Each point on the curve represents the probability that cost will be less 

than or equal to that value. The point on each IRR curve indicates the probability that 

IRR will be less than or equal to this value. This value is analogous to the Value at Risk 

(VaR), whilst the cumulative probability is analagous to the β threshold. 

 

4.2.2 REFIT required for different installation sizes 

Given the unprofitability of the proposed €0.26/kWh REFIT rate, this section analyses 

the minimum REFIT required to yield an IRR of at least 10% at each CVaR threshold. 

This allows one to identify the minimum cost required to incentivise deployment in an 

uncertain cost environment, with each CVaR threshold representing different 

thresholds of certainty required by investors. These results are presented in Table 5 

 

Table 5: REFIT yielding an IRR of 10% or greater at various thresholds of 

certainty  

Installation Size 
Mean CVaR25 CVaR15 CVaR5 

(€/kWh) (€/kWh) (€/kWh) (€/kWh) 

20 Units (15MW) 0.42 0.44 0.45 0.46 

50 Units (37.5MW) 0.34 0.36 0.37 0.38 

100 Units (75MW) 0.31 0.33 0.34 0.34 

Note: CVaRn represents the expected (mean) IRR achieved for cost values less than or equal 
to those at the nth percentile. 

Table 5 shows that, evaluated at the expected (mean) value, a REFIT of €0.42/kWh is 

required to ensure an IRR of 10% or greater for 20-unit installations, falling to 

€0.34/kWh and €0.31/kWh for 50 and 100-unit installations. In absolute terms, a 

REFIT premium of €0.02-0.04/kWh is required, depending on the scenario and degree 

of risk aversion. Given that the current REFIT for onshore wind is €0.069/kWh 

(DCENR, 2014b), with the majority of that funded by wholesale prices, this is not an 

insignificant amount.  

Alongside quantifying the added premium required at different thresholds of certainty, 

this section highlights the importance of anticipating installation size for the setting of 

an appropriate policy. If installations of many different sizes are anticipated under the 
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REFIT scheme, a policy of support which discriminates by size may be appropriate. 

This may result in a REFIT which changes with time, if average installation size is 

anticipated to change with time. Alternatively, a constant REFIT for viable 100-unit 

investment may be offered for all installation sizes, with a supplementary capital grant 

to cover additional costs. These are but two suggestions to reconcile the different 

optimal REFIT rates of Table 5 within a tractable policy framework. A full 

cost/benefit analysis of potential price support mechanisms to overcome this problem, 

alongside the impacts on uncertainty and required risk premia, is outside the scope of 

this paper, but is a future potential application of this probabilistic cost model.  

4.3 Influence of Learning on Device Cost and REFIT Requirement 

As with all WEC feasibility analyses, results presented are highly sensitive to the 

assumed rate of cost reduction or ‘learning’. This section identifies the implications 

this may have for both device developers and policymakers.  

 

Table 6 lists the rate of learning required for a REFIT of €0.26/kWh to be effective. 

To achieve an expected (mean) IRR of 10% or greater, 20 unit steel-based devices 

require a rate of cost scaling considerably greater than the most likely range of 0.82-

0.95 quoted by Hau (2006). For every doubling of capacity, this analysis suggests that 

the cost of a 20-unit installation must be scaled by a factor of 0.68, or 68%. This rate 

increases when uncertainty is taking to account. 

 

The expected rate of cost scaling falls to 0.80 for installations of 50 unit devices. This 

is closer to the potential range of Hau (2006). The premium to account for uncertainty 

falls for 50 and 100 unit devices, with an added 2-3% rate of ‘learning’ required for 

both, depending on the degree of risk aversion present. The observed values for 100 

unit steel-based devices are within the range of 0.82-0.95 cited by Hau (2006), 

however, they are still greater than the likely value of 0.90 commonly employed in the 

literature and may thus be considered optimistic. Interestingly, one can see that the 

required rate of cost scaling declines with each subsequent device specification. This 

reflects two factors. First, there are greater economies of scale to be achieved with 

larger installations, whereby constant infrastructural costs are spread over a greater 

output. Second, a larger installation size, and thus a greater level of cumulative 

installation, presents scope for a greater absolute change in cost. The impact of 
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uncertainty, in absolute terms, seems to fall albeit at a potentially diminishing rate, for 

larger installation sizes. This illustrates the greater importance of incorporating 

uncertainty in small installation scenarios. Early deployment is likely to comprise 

smaller installation sizes (DCENR, 2014a; MI & SEI, 2005) and thus the findings of 

this paper may be more pertinent in such scenarios.  

Table 6: Rate of Learning Required for IRR of 10% when REFIT of €0.26/kWh 

in place 

Installation Size Mean CVaR25 CVaR15 CVaR5 

20 Units (15MW) 0.68 0.65 0.64 0.63 

50 Units (37.5MW) 0.80 0.78 0.78 0.77 

100 Units (75MW) 0.85 0.83 0.83 0.82 
Note: The rate of learning represents the scaling of cost with every doubling of capacity. 

Although the accepted convention within the literature, the quoting of cost reduction 

as a scale or percentage is somewhat abstract. In order to ground these parameters in 

measures of unitary cost, the rate of cost reduction required between the first and last 

unit deployed for each installation scenario is displayed in Table 7. Such information 

may provide cost targets for potential device developers to achieve profitable 

deployment, demonstrating an added use of this modelling framework. In the context 

of this analysis, the CVaRn threshold may be interpreted as a prudent cost value for a 

developer to aim for in order to achieve an appropriate rate of cost reduction. Thus, if 

a developer can produce the first/last device at a levelised cost less than or equal to 

the CVaR5 value quoted in Table 7, there is a 95% chance of achieving an IRR of 

10% or greater under the assumptions of this case study. The rate of cost reduction 

under a 0.90 rate of cost scaling is calculated also to provide a benchmark against 

which required rates of reduction may be compared to those expected.  

Evaluated at CVaR5, costs fall by 35% from the first to the last device under the 

benchmark 0.90 rate of cost reduction. However, in order to achieve cost-effective 

deployment costs must fall by between 51-68%. This highlights the considerable 

difficulty developers may face in achieving cost-effective deployment under currently 

proposed policy conditions, especially for lower installation sizes.  
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Table 7: Difference Between Levelised Cost of First and Last Unit due to 

Learning 

Installation Size 
Learning 

Rate 

Mean Levelised Cost 

(€/kWh) 
CVaR5 Levelised 

Cost (€/kWh) 
Rate of 

Cost 

Reduction Unit 1 Final Unit Unit 1 Final Unit 
20 Units (15MW) 0.63 0.399 0.135 0.366 0.117 68.03% 

0.9 0.399 0.260 0.366 0.236 35.52% 

50 Units (37.5MW) 0.77 0.359 0.153 0.328 0.137 58.23% 
0.9 0.359 0.234 0.328 0.213 35.06% 

100 Units (75MW) 0.82 0.344 0.169 0.314 0.152 51.59% 
0.9 0.344 0.224 0.314 0.203 35.35% 

Note: Unit cost values quoted are levelised cost estimates for first and last units of a given installation 
specification, evaluated at mean and CVaR5 thresholds. Differences in these cost estimates are due to 
the assumed learning and resulting cost reductions through the cumulative installation of intervening 
units, evaluated at the CVaR value.  

Table 8 displays the impact that sensitivity to learning may have on financial return 

and thus the required REFIT policy of support. For this analysis, the required REFIT 

is defined as that which yields an IRR of 10% at 95% probability, according to CVaR5 

criteria. Similar to the findings of Table 7, the required rate of REFIT is highly 

sensitive to the assumed rate of learning. For policymakers, this illustrates the degree 

to which correct prediction of the anticipated learning rate is especially important to 

yield an IRR of 10%. The premium for uncertainty declines as the rate of cost scaling 

approaches 1, indicating that accounting for potential uncertainty in cost values is of 

greater importance if cost reduction is likely to proceed at a greater pace.  

Finally, it can be seen that the proposed REFIT rate of 0.26/kWh only provides an 

adequate rate of return under the extreme upper bound in cost scaling, at a learning 

rate of 0.82. This indicates that it is only under the most optimistic of deployment 

criteria that proposed Irish REFIT policy is adequate to yield an appropriate financial 

return for deployment.  

 

Table 8: REFIT Required (€/kWh) for IRR of 10% 

Installation Size Learning Mean CVaR25 CVaR15 CVaR5 
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20 Units (15MW) 0.82 0.35 0.37 0.37 0.38 

0.95 0.47 0.49 0.5 0.51 

50 Units (37.5MW) 0.82 0.27 0.29 0.29 0.3 

 
0.95 0.4 0.43 0.43 0.44 

100 Units (75MW) 0.82 0.24 0.25 0.25 0.26 

  0.95 0.37 0.4 0.4 0.41 
Note: ‘Learning’ refers to the rate of cost reduction for every doubling of capacity (cost scaling) 
employed in calculation. The ‘REFIT required’ is calculated as the REFIT rate required to yield a mean 
IRR value of 10% IRR for the lowest nth percentile of simulated distributions.  

 

5. Conclusion and Policy Implications 
The economic evaluation of wave energy conversion devices has been limited to date 

by the uncertainty surrounding the true value of existing cost estimates. To 

incorporate the effect this uncertainty may have in policymaker, investor and 

developer decision-making, this paper has developed a tool to quantify the likelihood 

of achieving a given cost estimate. This model has been applied to a representative 

case study to further inform policymakers and investors as to the cost of wave energy 

devices in Ireland. The first goal of this paper was to quantify cost estimates for a 

central scenario of deployment. It was found that the expected levelised cost of 

electricity for 100 unit steel-based installations is €0.244/kWh. The uncertainty 

surrounding this estimation was quantified, with VaR and CVaR methodologies 

shown to account for risk in cost and policy appraisal. It was found that there is a 95% 

likelihood of achieving a cost value less than or equal to €0.267/kWh for 100-unit 

installations using the CVaR methodology.  

 

The second goal of this chapter was to assess the certainty to which a feed-in tariff of 

0.26/kWh provides an adequate return on investment, when investments are evaluated 

at their expected value or at a threshold accounting for uncertainty. This gives insight 

into the influence of cost uncertainty when policymakers are setting feed-in tariff 

rates. It was found that a tariff of €0.26/kWh is insufficient for all considered device 

specifications, with a REFIT of €0.42 required for 20-unit installations when 
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evaluated at the expected mean value, rising to €0.46 when evaluated under CVaR5 

criteria. For 100-unit installations, expected mean and CVaR5 criteria suggest values 

of €0.31/kWh and €0.34/kWh respectively. Thus, this methodology may identify the 

premium required to account for cost uncertainty. The third goal of this chapter was to 

explore the sensitivity of results to different rates of cost reduction or ‘learning’. The 

rates of learning required for feasible deployment under proposed REFIT policy were 

identified, whilst the REFIT rates required for feasible deployment under different 

rates of learning were presented.  

Although cost estimates are still subject to uncertainty and thus to be treated with a 

degree of caution, this paper has presented a means to quantify this uncertainty 

through probabilistic simulation. This analysis recommends that prudent policy, cost 

and developer evaluation should incorporate cost variability into WEC project 

appraisal and has demonstrated how this may be done. For investors, a means to 

quantify the uncertainty of the investment environment allows for more informed 

investment decisions. For developers, this model has been applied to determine 

targets of cost reduction for feasible deployment. Furthermore, using the CVaR 

methodology allows for potential uncertainties to be incorporated in appropriate 

targets, such that prudent goals of cost reduction that account for potential cost 

uncertainties may be defined. Policymakers have been presented with a framework 

that quantifies the certainty with which a given measure will create the desired 

investment environment. This has contributed to the policymaker’s decision-making 

process in two ways. First, the need for a premium in FiT rates to account for cost 

uncertainty has been identified. Second, a means to efficiently specify this premium 

has been outlined.  

 

A sensitivity analysis also identified the impact that greater levels of device learning 

may have for levelised cost estimates. Cost-benefit analysis of R&D investments to 

achieve such accelerated learning and application to alternate jurisdictions are further 

extensions.  

 

The current economic climate is characterised by increasingly constrained public 

finances, alongside a global energy market characterised by increasingly uncertain 

fuel prices. Many jurisdictions, such as Ireland, have made considerable and 
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continuing commitments to support WEC device deployment, despite these economic 

conditions. This paper has demonstrated the impact uncertainty may have on the 

policymaking process, outlining an appropriate modelling framework with which 

policymakers may take this into account. Quantifying the effects of cost uncertainty 

allows policymakers to identify with greater precision any potential premia that may 

be required, allowing for more efficient use of constrained public finances. Applied to 

an Irish case study, this provides a timely contribution by complementing existing 

cost estimates to better inform future policy processes in Ireland and elsewhere.  
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